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Motivation

Probing interrupts is crucial for interrupt side channel attacks
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Timer-constrained Scenario

l To constrain the use of architectural timers, there has been many 

countermeasures that either detect timers or disable them

l procfs-based probing can be easily defeated by removing unprivileged 

access to the procfs interface. 
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Research Question

l Is there a microarchitectural technique across x86 CPUs probing 

interrupts without any timers? 

l If yes, what attacks can be mounted and what information can be 

leaked?
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Our work

l We propose SegScope, a new technique that abuses segment 

protection on x86 to acquire fine-grained interrupt observations 

without relying on any (external) timer

l Our key observation is that some non-zero selector values are 

considered as null segment selector and will be cleared by CPUs 

when an interrupt occurs
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Segment Protection

l Supported by a wide range of Intel and AMD-based CPUs

l Ensure a user process cannot access the kernel address outside the 

controlled and well-defined interfaces

l CPU clears the data segment registers if they contain high-privileged 

information when returning to the lower-privileged level
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Segment Protection 

The x86 architecture defines segment registers for memory segmentation, 

dividing main memory into segments or sections.
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SegScope 

l Segment selectors are stored in the “visible part” of data segment 

registers (i.e., DS, ES, GS, and FS), which can be read and written by 

an unprivileged process

l Segment selectors can be set to NULL without any privilege check. 

No exception will occur until they are referenced
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Segment Protection 

Sel

We observe that the NULL segment selector is not always 0 ...

Index TI RPL
15                         3        2            0

GDT

High-previleged 
Segment Descriptor

Null 

...

if TI = 0 and Index = 0



10

SegScope 

Segment Descriptor Cache

Visible Part

Invisible Part

Sel (16-bit)

Initialize Sel=0x0001, 0x0002, or 0x0003;

SegCnt=0 

1

M



11

SegScope 
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while (check_sel()==1){
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}
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SegScope 
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SegScope 
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SegScope-based Timer 

l On x86, timer interrupts are generated by Advanced Programmable 

Interrupt Controller (APIC) at fixed time intervals

l The number of timer interrupts accounts for over 99% of the overall 

interrupts

l Existing timer interrupt based works assume a privileged user who 

controls the frequency of timer interrupts, in either attack or 

defense scenarios
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SegScope-based Timer 

M
Time

Attacker 
Controlled Code

SegScope-based 
Timer 

t1 t2 tn

. . .

. . .

 T  T T
//

: Timer Interrupt  : Malicous ProcessM : SegCnt

 

As the time interval between two consecutive timer interrupts is fixed, 

SegScope can time the other piece of code that shares the time interval
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Case Studies—For SegScope 

lWe can fingerprint websites with an accuracy of over 90%

l SegScope can filter out the interrupt noise for Spectral, reducing its error 

rate by 56x
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Case Studies—For SegScope-based Timer 

lWe can steal DNN model architectures and extract SIKE keys.

lWe can break KASLR within 10 seconds and mount Flush+Reload based 

Spectre attack
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Mitigations

l Software Mitigation: Modifying OS kernel/x86 CPU architecture

l Hardware Mitigation: A potential strategy of mitigating SegScope is to 

keep the values of the segment registers unchanged in future 

architectures, which however introduces a new covert channel

l Hardware-software Co-design: when context switch occurs, OS kernels 

save and restore the segment registers for every process, and CPUs 

preserve the non-zero segment selectors as-is. 
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Takeaway

l A general “µarch-state-to-arch-state” converter via observing 

architectural footprints on x86

l SegScope can be used to probe fine-grained interrupts without 

any (external) timers

l Based on SegScope, timer interrupts can be exploited by 

unprivileged attackers to build a new fine-grained timer.

l Artifact: https://github/zhangxin00/segscope
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