
SegScope: Probing Fine-grained Interrupts 
via Architectural Footprints

Xin Zhang1, Zhi Zhang1, Qingni Shen*, 

Wenhao Wang, Yansong Gao, Zhuoxi Yang, Jiliang Zhang

1Both are joint first author   *Corresponding author



2

Motivation

Probing interrupts is crucial for interrupt side channel attacks

Victim

Timestamp

Cache state 

Execution speed of specific 
instructions

Unprivileged procfs interface 
(i.e., /proc/interrupts)

Attacker



3

Timer-constrained Scenario

l To constrain the use of architectural timers, there has been many 

countermeasures that either detect timers or disable them

l procfs-based probing can be easily defeated by removing unprivileged 

access to the procfs interface. 



4

Research Question

l Is there a microarchitectural technique across x86 CPUs probing 

interrupts without any timers? 

l If yes, what attacks can be mounted and what information can be 

leaked?



5

Our work

l We propose SegScope, a new technique that abuses segment 

protection on x86 to acquire fine-grained interrupt observations 

without relying on any (external) timer

l Our key observation is that some non-zero selector values are 

considered as null segment selector and will be cleared by CPUs 

when an interrupt occurs



6

Segment Protection

l Supported by a wide range of Intel and AMD-based CPUs

l Ensure a user process cannot access the kernel address outside the 

controlled and well-defined interfaces

l CPU clears the data segment registers if they contain high-privileged 

information when returning to the lower-privileged level



7

Segment Protection 

The x86 architecture defines segment registers for memory segmentation, 

dividing main memory into segments or sections.

GDT

High-previleged 
Segment Descriptor

Null 

... Sel Sel

Reg.selector ← 0Offset Offset



8

SegScope 

l Segment selectors are stored in the “visible part” of data segment 

registers (i.e., DS, ES, GS, and FS), which can be read and written by 

an unprivileged process

l Segment selectors can be set to NULL without any privilege check. 

No exception will occur until they are referenced



9

Segment Protection 

Sel

We observe that the NULL segment selector is not always 0 ...

Index TI RPL
15                         3        2            0

GDT

High-previleged 
Segment Descriptor

Null 

...

if TI = 0 and Index = 0



10

SegScope 

Segment Descriptor Cache

Visible Part

Invisible Part

Sel (16-bit)

Initialize Sel=0x0001, 0x0002, or 0x0003;

SegCnt=0 

1

M



11

SegScope 

Segment Descriptor Cache

Visible Part

Invisible Part

Sel (16-bit)

M

Loop to check Sel and increment SegCnt2

while (check_sel()==1){
SegCnt++;

}



12

SegScope 

Segment Descriptor Cache

Visible Part

Invisible Part

Sel (16-bit)

M

CPU will clear the null segment selector to 03

OS KernelCPU

Interrupt



13

SegScope 

Segment Descriptor Cache

Visible Part

Invisible Part

Sel (16-bit)

M

Stop counting and break the loop4

OS KernelCPU

Interrupt



14

SegScope-based Timer 

l On x86, timer interrupts are generated by Advanced Programmable 

Interrupt Controller (APIC) at fixed time intervals

l The number of timer interrupts accounts for over 99% of the overall 

interrupts

l Existing timer interrupt based works assume a privileged user who 

controls the frequency of timer interrupts, in either attack or 

defense scenarios



15

SegScope-based Timer 

M
Time

Attacker 
Controlled Code

SegScope-based 
Timer 

t1 t2 tn

. . .

. . .

 T  T T
//

: Timer Interrupt  : Malicous ProcessM : SegCnt

 

As the time interval between two consecutive timer interrupts is fixed, 

SegScope can time the other piece of code that shares the time interval



16

Case Studies—For SegScope 

lWe can fingerprint websites with an accuracy of over 90%

l SegScope can filter out the interrupt noise for Spectral, reducing its error 

rate by 56x



17

Case Studies—For SegScope-based Timer 

lWe can steal DNN model architectures and extract SIKE keys.

lWe can break KASLR within 10 seconds and mount Flush+Reload based 

Spectre attack



18

Mitigations

l Software Mitigation: Modifying OS kernel/x86 CPU architecture

l Hardware Mitigation: A potential strategy of mitigating SegScope is to 

keep the values of the segment registers unchanged in future 

architectures, which however introduces a new covert channel

l Hardware-software Co-design: when context switch occurs, OS kernels 

save and restore the segment registers for every process, and CPUs 

preserve the non-zero segment selectors as-is. 



19

Mitigations

l Software Mitigation: Modifying OS kernel/x86 CPU architecture

l Hardware Mitigation: A potential strategy of mitigating SegScope is to 

keep the values of the segment registers unchanged in future 

architectures, which however introduces a new covert channel

l Hardware-software Co-design: when context switch occurs, OS kernels 

save and restore the segment registers for every process, and CPUs 

preserve the non-zero segment selectors as-is. 



20

Mitigations

l Software Mitigation: Modifying OS kernel/x86 CPU architecture

l Hardware Mitigation: A potential strategy of mitigating SegScope is to 

keep the values of the segment registers unchanged in future 

architectures, which however introduces a new covert channel

l Hardware-software Co-design: when context switch occurs, OS kernels 

save and restore the segment registers for every process, and CPUs 

preserve the non-zero segment selectors as-is. 



21

Takeaway

l A general “µarch-state-to-arch-state” converter via observing 

architectural footprints on x86

l SegScope can be used to probe fine-grained interrupts without 

any (external) timers

l Based on SegScope, timer interrupts can be exploited by 

unprivileged attackers to build a new fine-grained timer.

l Artifact: https://github/zhangxin00/segscope



SegScope: Probing Fine-grained Interrupts 
via Architectural Footprints

Q & A


