
IPOD2: An Irrecoverable and
Verifiable Deletion Scheme for

Outsourced Data
Xiaolei Zhang1,3,4, Zhaoyu Chen2,3,4, Xin Zhang2,3,4, Qingni

Shen2,3,4,∗ and Zhonghai Wu1,2,3,4,∗

1School of Computer Science, Peking University, Beijing 100871, China
2School of Software and Microelectronics, Peking University, Beijing 102600, China

3National Engineering Research Center for Software Engineering, Peking University, Beijing
100871, China

4PKU-OCTA Laboratory for Blockchain and Privacy Computing, Peking University, Beijing
100871, China

∗Corresponding author: qingnishen@ss.pku.edu.cn; wuzh@pku.edu.cn

To alleviate the burden of data storage and management, there is a growing trend
of outsourcing data to the cloud that enables users to remotely manage their
data flexibly. However, this shift also raises concerns regarding outsourced data
deletion, as users lose physical control over their outsourced data and are unable
to verify its proper eradication. To address this issue, cloud service providers are
required to provide a scheme that guarantees the effective deletion of outsourced
data. Existing schemes, including key management-based and overwriting-based
schemes, fail to ensure both the irrecoverability of deleted data and the verifiability
of the deletion process. In this paper, we propose IPOD2, an irrecoverable and
verifiable deletion scheme for outsourced data. Specifically, IPOD2 utilizes the
overwriting-based deletion method to implement outsourced data deletion and
extends the Integrity Measurement Architecture (IMA) to measure the operations
in the deletion process. The measurement results are protected by the Trusted
Platform Module (TPM) and verifiable for users. To demonstrate the viability
of IPOD2, we implement a prototype of IPOD2 on the Linux kernel 5.4.120.
Experimental results show that, compared with the three existing schemes, IPOD2

has the minimum overhead in both deletion and verification processes.

Keywords: Outsourced Data Deletion; Trusted Computing; Cloud Storage; Integrity
Measurement Architecture

1. INTRODUCTION

To alleviate the burden of data storage and manage-
ment, there is a growing trend of outsourcing data to
the cloud [1–3] that enables users to remotely man-
age their data flexibly [4, 5]. Despite the advantages
offered by cloud storage, outsourced data encounters
significant data security challenges, leading to frequent
instances of data leakage [6–8]. In particular, due to
the multi-tenancy feature of cloud storage, outsourced
data that is not promptly deleted according to users’ re-
quirements can easily be inadvertently exposed to unau-
thorized users. This results in the leakage of user pri-
vacy [9,10]. Recognizing these issues, both the General
Data Protection Regulation (GDPR) [11] and the China
Personal Information Protection Law (PIPL) [12] neces-
sitate data controllers (e.g., cloud service providers) to
provide effective deletion methods for outsourced data.

The root cause preventing users from confirming the

deletion of outsourced data is the lack of transparency
in the deletion process. Once data is outsourced,
users lose physical control over the data because they
cannot access the infrastructure of cloud storage [9,13–
15]. This results in the deletion of outsourced data
becoming a black-box operation, making it impossible
for users to confirm whether the data has been deleted
as required [14–16]. To mitigate these concerns,
the cloud service provider (CSP) should provide an
effective outsourced data deletion scheme that fulfills
two essential properties:

• Irrecoverability: The deleted outsourced data
should become irrecoverable immediately, and no
one can obtain any information about the deleted
data.

• Verifiability: CSP should provide detailed and
trustworthy deletion proof of the deletion process,

The Computer Journal, Vol. ??, No. ??, ????

TABLE 1. The comparison of outsourced data deletion
schemes. IPOD2 achieves irrecoverability and verifiability
well at the same time.

Scheme
Deletion

Method

Security

Guarantee
Irrecoverability Verifiability

[17] delete key CKM

[10] delete key CKM

[18] delete key CKM

[9] delete key DKM

[13] delete key DKM

[19] delete key CSP

[14] delete key CSP

[15] re-encrypt data CSP

[20] overwrite data CSP

[16] overwrite data CSP

IPOD2 overwrite data TH

CKM: Centralized Key Manager. DKM: Decentralized Key Manager.
CSP: Cloud Service Provider. TH: Trusted Hardware.

Not satisfy the property. Partially satisfy the property. Fully
satisfy the property.

showcasing the successful deletion of the data as
per the users’ request.

Previous approaches for deleting outsourced data can
be divided into two classes based on deletion methods:
key management-based schemes and overwriting-
based schemes. Specifically, key management-based
schemes [9, 10, 13–15, 17–19] encrypt the data before
outsourcing and render the encrypted outsourced
data irretrievable by deleting corresponding decryption
keys. Although these schemes have demonstrated high
efficiency in deleting data, they face the following three
security concerns. First, as the ciphertext of the
deleted data remains in the cloud, adversaries who
obtain or recover the decryption key (e.g., forensic
forensics or offline dictionary attacks) could recover the
deleted data [9, 16, 20]. Second, as we summarized
in Table 1, all these key management-based schemes
entail the need for a trusted entity (e.g., a trusted third
party or the cloud service provider itself) to manage
cryptographic keys, thereby increasing the management
overhead. Last, most key management-based schemes
do not consider the verification of outsourced data
deletion. Although Mo et al. [14] and Xue et al. [15]
provide simple proofs that include deletion results,
their simple proofs do not include detailed information
on the deletion process, and the credibility of proofs
lacks assurance from trusted hardware (e.g., Trusted
Platform Module). As a result, CSP cannot furnish
users with adequate details related to the deletion
process and may face doubts from users regarding
potential tampering or forgery of the proofs.

Overwriting-based deletion schemes [16, 20] aim to
ensure data irrecoverability by overwriting the content
of original data with a meaningless data pattern. The

data pattern used for overwriting is typically a user-
defined character sequence. After deletion, the user
can verify the deletion result by checking whether
the content of overwritten data is consistent with his
predefined character sequence. These overwriting-based
schemes leave minimal or even no information about
the deleted data [21]. However, these deletion proofs
also only contain the deletion result without the details
of the deletion process and lack credibility assurance.
Besides, due to the need to transfer the content of
the overwritten data for each verification, the cost of
verification increases with the data size.

In this paper, we propose IPOD21, a new data
deletion scheme that provides detailed and trustworthy
proof of the overwriting-based deletion process for
verification. Specifically, to ensure the irrecoverability
of deleted data, IPOD2 utilizes the overwriting-
based deletion method to implement outsourced data
deletion. To provide detailed and trustworthy proof
of the deletion process, IPOD2 extends the Integrity
Measurement Architecture (IMA) to measure the
operations in the deletion process and protects the
measurement results with the Trusted Platform Module
(TPM). The measurement results are used to prove
the deletion process of outsourced data. This way,
IPOD2 can achieve irrecoverable deletion of outsourced
data while providing detailed and trustworthy deletion
proofs.

To construct IPOD2, there are four challenges to
overcome.

First, since IMA can only identify system calls in the
kernel space rather than operations in the user space,
to enable IMA to identify and measure operations
during the deletion process, it is necessary to map the
operations to corresponding system calls. To achieve
this, we conduct a comprehensive analysis of three
overwriting-based deletion programs [22–24] that are
commonly used in Linux to extract the system call
sequence of the overwriting-based deletion process and
establish a mapping from operations to system calls (see
Section 5.2).

Second, IMA is event-driven, which means that IMA
responds to specific events (measurement events), e.g.,
file access, and performs measurements for target files
(measurement objects) associated with these events.
So we need to specify the measurement events and
measurement objects in IPOD2. Based on the mapping
between operations and system calls, we design deletion
hooks within related system calls to monitor executions
of system calls. Additionally, we construct a Deletion
Finite State Machine (D-FSM) to identify operations
according to executions of system calls. The operations
identified by D-FSM are the measurement objects in
IPOD2. D-FSM generates corresponding measurement
events for these operations to trigger IMA to measure

1IPOD2 refers to IMA Proof-based Outsourced Data
Deletion.

them. To further reduce redundant measurements, we
set a specific attribute for outsourced data and IPOD2
only measures the operations on the data with this
attribute (see Section 5.3).

Third, IMA does not measure the same object
repeatedly and stores the measurement results of all
objects together. However, the deletion process in
IPOD2 includes repeated operations (e.g., multiple
overwriting), and the measurement results generated
by IMA are used as deletion proofs for users to verify.
Directly applying IMA to measure operations in the
deletion process poses two issues: 1) the inability to
repeatedly measure the same object leads to the loss
of measurement results for repeated operations in the
deletion process, and 2) storing all measurement results
together introduces significant overhead and potential
privacy concerns during verification. To address these
issues, we modify the measurement strategy of IMA
to accommodate the requirements of IPOD2. For the
measurement objects (i.e., operations in the deletion
process) in IPOD2, we reset the flag used by IMA to
mark the repeated measurement objects, enabling IMA
to measure repeated operations in the deletion process.
Based on the identifier of files within operations, we
introduce a Splitter to split the measurement results of
operations associated with different data. Besides, we
designed a file-based Platform Configuration Register
(fPCR) module to provide independent and TPM-based
protection for measurement results (see Section 5.4).

Last, after deletion, the user should be able to
verify the deletion of outsourced data based on the
measurement results. To achieve this, in IPOD2,
the user verifies measurement results based on the
remote attestation technology. During the verification,
if measurement results have not been tampered with or
forged by anyone, we consider the measurement results
to be trustworthy. The user initially validates whether
the received measurement results are trustworthy. If
the validation result is true, the user proceeds to
verify whether the outsourced data has been deleted
as required according to the content of the trustworthy
measurement results (see Section 5.5).

We implement a prototype of IPOD2 on the Linux
kernel 5.4.120, requiring minimal modifications with
only 1528 lines of additional code. To demonstrate
the viability and practicality of IPOD2, we perform
a comprehensive evaluation from three aspects. First,
to evaluate the impact of IPOD2 on the kernel, we
separately run LMbench3 [25] and invoke each of the
system calls implanted with deletion hooks 10 million
times. Experimental results show that the overall
performance of the kernel with IPOD2 is close to
that of the original kernel and the additional overhead
of these system calls is less than 15%. Second, we
evaluate the deletion overhead and verification overhead
of IPOD2. Specifically, we calculate the measurement
overhead by comparing the time cost of the deletion
process in the kernel with IPOD2 to the deletion process

in the original kernel. According to experimental
results, with the increase in file size, the measurement
overhead slowly increases, but its influence on the
overhead of the overall deletion process diminishes. To
evaluate the verification overhead in IPOD2, we test
the time cost for proof generation, communication, and
proof verification during the verification process. The
experimental results show that the entire overhead of
the verification process does not exceed 0.5 seconds, and
the overhead of the user to verify deletion proof is less
than 14 milliseconds. Last, we compare the deletion
and verification overheads of IPOD2 with three existing
schemes, the experimental results show that IPOD2
has the minimum overhead in both the deletion and
verification processes (see Section 6).

Summary of Contributions: The main contribu-
tions of this paper are as follows:

• We propose an irrecoverable and verifiable deletion
scheme for outsourced data, called IPOD2, which
provides detailed and trustworthy proof of the
overwriting-based deletion process for verification.
To the best of our knowledge, this is the first
deletion scheme for outsourced data that provides
detailed and trustworthy proof of the deletion
process.

• To construct IPOD2, first, we map operations
in the deletion process to system calls. Second,
based on the mapping between the operations
and system calls, we introduce deletion hooks
and D-FSM to identify operations in the deletion
process and trigger IMA to measure them. Third,
we modify the measurement strategy of IMA to
satisfy the requirements of measuring the deletion
process. We further design fPCR module to
provide independent and TPM-based protection
for the measurement rustles of different data. Last,
the verification process in IPOD2 is derived from
the remote attestation, allowing the user to verify
whether the data has been deleted as required
based on the measurement results.

• To demonstrate the viability and practicality of
IPOD2, we implement a prototype of IPOD2
on Linux 5.4.120 and conduct a comprehensive
evaluation of it. Experimental results show that
IPOD2 only adds 1528 lines of code to the
kernel and introduces minimal additional overhead.
Compared with the three existing schemes, IPOD2
has the minimum overhead in both deletion and
verification processes.

The rest of this paper is organized as follows. In
Section 2, we survey and discuss related works. In
Section 3, we overview the background information.
Next, in Section 4, we formalize the system model,
threat model, and design goals of IPOD2. Following
that, Section 5 presents an overview of IPOD2,

followed by its design details. The implementation and
evaluation are provided in Section 6. In Section 7, we
discuss some limitations of IPOD2. Last, we conclude
this paper in Section 8.

2. RELATED WORK

According to deletion methods, existing schemes can be
classified into two classes as follows.

Key Management-based Schemes: In general,
key management-based schemes work by encrypting
data before outsourcing, and later deleting the data
by destroying the corresponding key. Existing key
management-based schemes can be divided into two
classes based on key management methods, i.e., three-
party-based schemes and two-party-based schemes.

In three-party-based schemes, researchers aim to
design a system that works atop existing cloud storage
services. Therefore, these schemes typically introduce a
trusted third party to manage keys, while CSP is only
responsible for storing data (ciphertext). Perlman et
al. [17] first proposed a trusted centralized key manager
(called Ephemerizer) to maintain the keys. However,
the scheme does not consider fine-grained management.
Tang et al. [10] then proposed a policy-based outsourced
data deletion scheme, which associates data with policy
to achieve fine-grained management, and multiple key
managers based on Shamir’s(M,N) threshold secret
sharing [26] are used to avoid single point of failure.
Tang et al. [18] constructed a Timed-Ephemerizer based
on Ephemerizer [17] with complete security proofs,
and it utilizes the timed-release encryption to achieve
the data only be released after a predefined disclosure
time. Considering the trust and security concerns of a
centralized key manager, Geambasu et al. [9] proposed
a distributed key manager based on a Distributed Hash
Table (DHT), but attacks in DHT may affect the
scheme’s security. Castelluccia et al. [13] proposed
the EphPub that builds on the Domain Name System
(DNS) and its caching mechanism, but this scheme does
not easy to achieve flexible control of the data’s whole
life cycle.

In two-party-based schemes, researchers consider the
increased attack surface introduced by the third party
and the users’ suspicion regarding the trustworthiness of
the third party. They proposed schemes involving only
users and CSP. Mo et al. [14,19] proposed a fine-grained
outsourced data deletion scheme without third-party
key managers, which use the key modulation function
and modulator adjustment algorithms to manage keys.
Xue et al. [15] utilized the attribute revocation in KP-
ABE [27] to achieve outsourced data deletion, user re-
encrypt the outsourced data to make it unrecoverable
and verify the re-encrypt result generated by CSP to
verify the deletion result.

Key management-based schemes keep the ciphertext
of the data in the cloud after deleting keys. Therefore,
adversaries who obtain the keys (e.g., forensic forensics

or offline dictionary attacks) could recover the deleted
data. IPOD2 utilizes an overwriting-based method to
delete data, which fundamentally addresses this issue.
Besides, since data deletion in IPOD2 does not require
key management, this effectively reduces the system’s
management overhead. Last, most existing key
management-based schemes do not consider deletion
verification. On the contrary, IPOD2 provides details
of data deletion processes for users to verify.

Overwriting-based Schemes: Overwriting-based
schemes [16, 20] aim to ensure data irrecoverability
by overwriting the content of outsourced data with
a user-defined, meaningless data pattern. PoSE-s
proposed in [20] deletes outsourced data by using a
special pattern generated by the users to overwrite the
physical medium, and users verify the deletion result
by comparing the overwritten result with the pattern.
However, this scheme is designed for embedded devices
with limited storage, which is not suitable for cloud
storage. Zhang et al. [16] leveraged similar methods and
proposed PTAD for cloud storage. PTAD references
the idea of Proof of Data Possession(PDP) [28], which
verifies the deletion result by checking the correctness
and integrity of the overwritten data.

However, the deletion results provided in [16, 20]
do not include details of deletion processes and lack
credibility assurance. To address these issues, IPOD2
provides users with the deletion proof that includes
detailed information about operations during the
deletion process, further signed and protected by TPM.
Besides, in [16], the necessity to transmit the content
of overwritten data for verification results in increased
verification overhead as the data size grows. In contrast,
the deletion proof in IPOD2 records information about
operations during the deletion process, independent
of data size. Therefore, the verification overhead in
IPOD2 is fixed and small irrespective of data size. We
thoroughly evaluate the verification overhead of IPOD2
in Section 6.2.

Most existing schemes [9, 10, 14–16] focus on
the irreversibility of deleted data, overlooking the
verifiability of the deletion process. These schemes
aim to resist an adversary (data thief) who may
attempt to recover deleted data after deletion. Some
schemes [14–16, 19, 20] also consider the verifiability of
the deletion process. However, the provided deletion
proof lacks both details of the deletion process and
credibility assurance. Such deletion proof not only fails
to convince users that outsourced data has been deleted
as required but also prompts malicious users [16] to
doubt the credibility of the proof. These malicious users
allege that CSP has failed to delete data as required and
seek compensation.

In IPOD2, we simultaneously consider the irrecover-
ability of deleted data and the verifiability of deletion
processes under the aforementioned two types of attack-
ers. The overwriting-based deletion method prevents

TABLE 2. Overwriting-based data deletion methods.

Type Name
Overwrite
Rounds

Pattern used
to overwrite

Research

Gutmann method [30] 1 - 35 random character
Pfitzner method [31] 7 or 33 random character

Schneier method [32] 7
1. number 0
2. number 1
3-7. random character

Standard

NAVSO P-5239-26 [33] 3
1. character
2. character′s compliment
3. random character

DoD 5220.22-M [34]
CSEC ITSG-06 [35]
AFSSI-5020 [36]
HMG IS5(Enhanced) [37]

3
1. number 0
2. number 1
3. random character

HMG IS5(Baseline) [37] 2
1. number 0
2. random character

NIST SP 800-88 [21] 1 1. fixed pattern(e.g., 0)
NZSIT 402 [38] 1 1. random letter

the data thief from recovering deleted data, while the
detailed and trustworthy deletion proof enables users
to verify the deletion process and leaves no room for
malicious users to exploit.

3. BACKGROUND

3.1. Overwriting

Overwriting refers to writing new data to the same
location on a storage device where previous data
resides, the data used to write typically is random
or meaningless content. Unlike unlinking, which only
removes the pointer of data from the file system’s
directories, overwriting erases the original data, making
the deletion more effective. Meanwhile, compared
to physical destruction that completely destroys the
physical medium containing the data, overwritten
medium can still be reused, making the cost of deletion
lower. Therefore, in file systems, overwriting is often
used as a means of effectively deleting sensitive or
confidential data. The deletion process usually involves
multiple overwriting to ensure the irreversibility of the
deleted data.

Reardon et al. [29] survey and discuss the overwriting-
based deletion approaches based on the layers and
interfaces involved in accessing a physical medium,
where the Gutmann method [30], Pfitzner method [31],
and Schneier method [32] are widely employed to
eliminate data on the physical medium. In industry,
overwriting-based deletion methods are also highly
favored. Table 2 illustrates the details of some
representative overwriting-based deletion methods,
where the Rounds refers to the number of overwriting
included in the deletion process, and the Pattern
refers to the data patterns used to overwrite. As
stated in NIST Special Publication 800-88 [21], for
storage devices containing magnetic media, a single
overwrite pass with a fixed pattern such as binary zero
typically hinders recovery of data even if state-of-the-art
laboratory techniques are applied to attempt to retrieve
the data. In IPOD2, we utilize the overwriting-based
method to delete data.

3.2. Integrity Measurement Architecture

We now provide the necessary background on the
Integrity Measurement Architecture (IMA) and its
dependence (i.e., TPM and remote attestation) on
which IPOD2 builds.

TPM: From the perspective of Trusted Comput-
ing [39], trust can be transferred step by step. The
Chain of Trust is constructed from a root of trust and
extended with the entire boot time, including BIOS,
GRUB, and finally the OS kernel. TPM is a hardware-
based root of trust for a platform. Any component in
the chain of trust is measured into TPM before loading,
and finally, a list of measurement results is generated
for this chain of trust.

TPM provides cryptographic algorithms and security
storage. There are 24 PCRs in TPM, which are
utilized to record the status information of the platform.
PCR0−7 are used to record the measurement results of
hardware, BIOS, and bootloader stages. Other PCRs
record measurement results of runtime components
based on the requirements of the system and platform.
There are only two operations have been defined for
PCRs by Trusted Computing Group’s specifications,
where PCR Reset is used to reset it when the platform
powers on, and the PCR Extend is used to extend the
new measurement result into it. After reboot, all PCRs
are initialized. Once the platform starts up, all the
values measured into a PCR cannot be reversed [40].

Remote Attestation: The remote attestation [41]
is used to enable a verifier to validate the integrity
of the target platform with the help of TPM.
Specifically, when receiving an attestation request, the
target platform collects integrity proof, including the
measurement result, PCRs’ values, and the signature
signed by TPM. This signature is signed by the private
key (i.e., Attestation Identity Key, AIK) of the specific
TPM attached to the target platform, including the
PCRs’ values, to represent the identity of the target
platform and the trustworthiness of the transferred
PCRs’ values. After receiving the integrity proof,
the verifier first checks the validity of the integrity
proof, i.e., checking whether the integrity proof has
been tampered with or forged. After the validation
result is positive, the verifier compares the content of
measurement results with his expected value to judge
the integrity of the target platform.

IMA: Sailer et al. proposed IMA [42] as a component
of the kernel’s integrity subsystem for expanding
the scope of the chain of trust to the application
layer. IMA provides a set of hooks to inspect and
measure the file-loading events (e.g., executing a binary
program, installing a kernel module, or reading a
configuration file) for protecting the integrity of loaded
files and executable programs within the platform.
The measurement list of IMA records measurements
of all events in order. An aggregate measurement
value over these events is bound to a physical PCR

in the TPM (PCR10 by default). Hence, on a trusted
boot system, users can attest to the system’s runtime
integrity by checking the measurement results of IMA.
IMA has been extensively studied by researchers,
including optimizing IMA’s measurement overhead [43],
reducing IMA’s measurement results size [44–46],
and compensating the deficiency of IMA’s remote
attestation [47]. Besides, IMA also has been applied in
various domains, such as resisting runtime attacks [48],
protecting the integrity of Docker containers [49, 50],
and protecting the integrity of IoT devices [51]. In
IPOD2, we extend IMA to measure and record the
operations during the outsourced data deletion process.
By adopting remote attestation, IPOD2 enables users
to verify the deletion process of outsourced data.

4. PROBLEM STATEMENT

4.1. System Model

In IPOD2, there are two entities involved: CSP and
Users. CSP offers its resources for users to store and
manage data. Users outsource their data to CSP to
reduce overhead and access data flexibly. Figure 1
illustrates an example workflow depicting the process of
data storage and management between CSP and users.
This workflow consists of nine operations, which can be
categorized into four stages: upload, download, delete,
and verify. In the following, we provide a detailed
description of the workflow based on the example
depicted in Figure 1.

• Upload: 1○ The user uploads data to CSP. 2○
During the data storage process in CSP, a unique
identifier is assigned to each outsourced data, and
a special attribute is set for it. 3○ After the data
storage is complete, CSP returns the data identifier
(i.e., FC) to the user.

• Download: 4○ The user downloads/accesses the
outsourced data with the corresponding identifier
from CSP.

• Delete: 5○ The user deletes the outsourced data
with the corresponding identifier from CSP. 6○
CSP deletes the data identified by the identifier.
During the deletion process, the data is deleted
by an overwriting-based deletion method, while
IMA measures the operations during the deletion
process and TPM protects the measurement
results.

• Verify: 7○ After deletion, the user requests the
deletion proof of the data with the corresponding
identifier. 8○ CSP returns the deletion proof
identified by the identifier to the user. 9○ The
user verifies the measurement results of outsourced
data according to the measurement results in the
deletion proof.

⑦ request (FC)

Users

④ download (FC)FEFDFB FCFA

⑤ delete (FC)

FC

Cloud Service Provider

Storage

IPOD2

IMA+ ⑧ return (proofFc)

od od od

② store the data

⑨ verify (proofFc)

od

FC

⑥ delete the data
identified by FC

FIGURE 1. The system model of our scheme. Outsourced
data is stored in CSP with a unique identifier (i.e., ‘Fi’ on
the file) and a special attribute (i.e., ‘od’ on the file) used
to distinguish it from the local files of CSP.

4.2. Threat Model

Aligned with [49,50,52], we assume that CSP possesses
trusted hardware, i.e., TPM, to support Trusted
Computing, and trusted boot [53] ensures the integrity
of the kernel. Similar to other existing mechanisms
based on Trusted Computing [49, 50], we do not
consider DoS, runtime attacks, and physical attacks
on the infrastructure of CSP. Users are unprivileged
entities in the system provided by CSP, who can
access and manage data through the interfaces provided
by CSP. Users are subject to access permissions and
restrictions defined by CSP and lack privileged access
to the underlying system.

In our threat model, we focus on two types of
adversaries, data thief [9, 10, 14–16] and misbehaving
user [16]. A data thief, who can obtain opportunities to
access the data disk of CSP and attempts to recover
and access the deleted data. A misbehaving user,
who doubts the credibility of the proof and alleges
that CSP has failed to delete data as required, seeking
compensation. [14–16] can not resist such a misbehaving
user, because the deletion proof in these schemes is too
simplistic and lacks credibility assurance, CSP does not
have any detailed and trustworthy proof to prove that
the data has been deleted as per the user’s request.

4.3. Goals

To construct an irrecoverable and verifiable outsourced
data deletion scheme, the design of IPOD2 needs to
achieve the following goals:

Irrecoverability: The deleted outsourced data should
become irrecoverable immediately, and no one can
recover or obtain any information about the deleted
data.

Verifiability: The deletion process of outsourced data
can be verified by the user. To meet this, trusted and
detailed deletion proof should be provided.

Efficiency: The processes of outsourced data deletion
and deletion verification do not incur significant
overhead to CSP and users. The content of the deletion
proof should be concise for users.

PCR 0 PCR 23…

TPM

IMA

Deletion Operations
User
Space

Kernel
Space

Measurement Results

Digest1 Digest2 Digest3 RN

H(Digest1||Digest2) H(Digest3||RN)

H(Hash0||Hash1)

Hash0 Hash1

PCR 11 …

Hardware

fPCR Module

1 2 3

D-FSM

Deletion Hooks

Newly added
components

Old value
of PCR 11

Root values
of MHTs

fPCRsIntermediate
values of MHTs

Splitter

Mapping

FIGURE 2. Overview architecture of IPOD2.

Privacy: During the verification process, users cannot
obtain any information about other data or users
through the deletion proof.

5. DESIGN OF IPOD2

5.1. Overview

IPOD2 aims to ensure the irrecoverability of deleted
data and enable the user to determine whether the
outsourced data has been deleted as required based on
detailed and trustworthy deletion proof. Specifically,
IPOD2 utilizes an overwriting-based method to delete
outsourced data and extends IMA to measure the
operations in the deletion process. The measurement
results of the operations are further protected by TPM
and used as deletion proof to prove the deletion process
of outsourced data.

To construct IPOD2, there are four challenges to
address. First, IMA can only identify the system
calls rather than the operations. Second, since IMA
is event-driven, it is necessary to specify measurement
objects and measurement events in IPOD2. Third,
the measurement results associated with the deletion
process should be complete and protected by TPM.
Last, after deletion, the user can verify whether the
data has been deleted as required according to the
measurement results.

To address these challenges, IPOD2 consists of
four key components. Figure 2 shows the overview
architecture of IPOD2. First, to enable IMA to
identify the operations in the deletion process, we map
operations in the user space to system calls in the
kernel space through the combination of static and
dynamic analysis. Second, based on the mapping,
we design deletion hooks and a Deletion Finite State
Machine (D-FSM) to identify the operations according
to the execution of system calls. Third, we modify the
measurement strategy of IMA to measure all operations
in the deletion process and append more information

(e.g., timestamp, operator, operation type) about the
operations in the measurement results to make it more
detailed. Besides, we split the measurement results
related to different data and introduce a file-based PCR
(fPCR) module to provide independent and TPM-based
protection for the measurement result of each data.
Last, we provide a verification mechanism based on
remote attestation, which enables the user to verify
whether the data has been deleted as required according
to the measurement results.

To provide a comprehensive understanding of IPOD2,
we present a step-by-step exploration of its key
components in the subsequent subsections. In
Section 5.2, we provide the construction process of
mapping operations in the deletion process to system
call sequences. In Section 5.3, based on the mapping,
we describe the detailed process through which IPOD2
identifies operations according to system calls. In
Section 5.4, we give the details of measuring operations
by IMA and protecting the measurement results by
TPM. In Section 5.5, we present the verification process
for outsourced data deletion.

5.2. Mapping Operations to System Calls

Since IMA can only identify system calls in the kernel
space rather than operations in the user space, to enable
IMA to measure operations in the deletion process, we
need to map these operations to system call sequences
first. To achieve this, we use a combination of static
and dynamic analysis methods to obtain this mapping.

Specifically, we select three commonly used
overwriting-based deletion programs [22–24] on
Linux for analysis. These programs encompass four
distinct operations: overwriting, truncation, renaming,
and unlinking. First, we conduct static analysis on
the source code of these programs to extract a generic
system call sequence representing these programs and
understand the function of each system call. Based
on the function of system calls, we establish a map-
ping from operations to system calls. Subsequently,
to validate the accuracy of this mapping, we conduct
dynamic analysis on these deletion programs using the
strace2. By adjusting pertinent parameters (e.g., the
number of overwrites, file size, and the length of the
file name), we obtain diverse system call sequences.
We then verified the correctness of the mapping by
comparing the differences between these sequences.

Based on our analysis, Figure 3 presents the generic
system call sequence representing these deletion pro-
grams, and indicates the mapping between operations
and system calls. As shown in Figure 3, truncation is
mapped to a single system call ftruncate, while other
operations are mapped to a set of system calls that ex-
ecute in a specific order. Taking the overwriting oper-
ation as an example, the process first invokes lseek to
reposition the write offset to the file’s beginning. Sub-

2https://strace.io/

fd = open(file) // open the file.

fstat(fd) // get the file state.

fcntl(fd, F_GETFL) // get I/O mode of the file.

fcntl(fd, F_SETFL) // turn on direct I/O mode for the file.

f_size = lseek(fd, 0, SEEK_END) // get the file size.

while(i < overwrite_times) do

lseek(fd,0,SEEK_SET) // jump to the beginning of the file.

offset = 0

while (offset < f_size) do

w_size = write(fd) // write the file.

offset = offset + w_size

sync(fd) // synchronize modification.

lseek(fd, offset, SEEK_SET) // adjust the write header.

end while

i++

end while

ftruncate(fd, 0) // truncate the file.

close(fd) // close the file.

fd_dir = open(file_dir) // open the directory of the file.

len = filepath.length

while(i < filepath.length)) do

renameat(filepath, 0, len) // rename the filepath.

sync(fd_dir) // synchronize modification.

len--

i++

end while

unlink(filepath) // unlink the file.

sync(fd_dir) // synchronize modification.

close(fd_dir) // close the directory of the file.

overwriting

truncation

renaming

unlinking

FIGURE 3. The system call sequence of the overwriting-
based deletion method. The corresponding deletion-related
operations are marked in red.

sequently, the process utilizes write to modify the con-
tent of the target file with random data, followed by
sync to synchronize the modified content to the disk
and lseek to reposition the write offset. This sequence
is iterated until the entire target file is overwritten.

5.3. Identifying Measurement Objects

The original IMA is event-driven and used to measure
the integrity of loaded files or modules, which means
that IMA responds to specific events (e.g., file access)
and performs integrity measurements for targeted files
associated with these events. To enable IMA to
measure the operations in the deletion process, we
need to identify measurement objects and generate
measurement events for them. To achieve this, we
implant deletion hooks in the system calls involved in
the sequence (obtained in Section 5.2) to monitor their
execution. Based on the mapping between operations
and system calls, we construct a D-FSM to identify
operations in the deletion process according to the
execution of system calls. Since IPOD2 is solely
concerned with the deletion process of outsourced data,
we set a special attribute for outsourced data and
IPOD2 only measures the deletion process of the data
possessing this attribute.

Specifically, to enable the kernel to distinguish
outsourced data, we utilize the Linux extended
attribute mechanism (xattr) to set a special attribute
for files corresponding to outsourced data. Each
outsourced data is associated with a D-FSM to identify
operations in its deletion process. When a system
call with the implanted deletion hook is executed, the
hook checks whether the operated file has the special
xattr. If the operated file has the special xattr, the
deletion hook sends the execution information of this
system call to the corresponding D-FSM. Otherwise, the
deletion hook ignores the execution of this system call.
The operations identified by D-FSM according to the
execution information of system calls are measurement
objects in IPOD2. After an operation is identified, D-
FSM generates a measurement event for it. We provide
the formal definition of D-FSM and its state transition
rules below.

Formally, we define D-FSM as a 5-tuple
(Q,Σ, T,Q0, QF), which consists of a finite set of
state Q, a finite set of input symbols Σ, a transition
function T : Q×Σ → Q, an initial state Q0 ∈ Q, and a
set of final state QF ⊆ Q. An input symbol in Σ is the
execution information of a system call. The final state
set QF includes two states, i.e., the success final state
QS , and the exception final state QE . QS indicates
that the deletion process has been executed completely
and correctly, and D-FSM ends successfully. QE indi-
cates that there are unexpected operations during the
deletion process, and thus D-FSM ends abnormally.

The state transition table of D-FSM is shown in
Table 3, which is constructed using the acquired system
call sequence. This table defines the state transition
rules of D-FSM and enables D-FSM to identify
corresponding operations in the deletion process based
on the execution of system calls. The ‘Operation’ part
in Table 3 refers to the operations identified by D-
FSM. After identifying an operation, D-FSM generates
a measurement event of this operation to trigger IMA
to measure it.

Based on the analysis in Section 5.2, the overwriting-
based deletion process has a specific initialization
system call sequence (open→fstat→fcntl→fcntl).
D-FSM proceeds to identity operations in the deletion
process after identifying this sequence. To prevent
misidentification due to operations or programs with
the same preceding sequence of system calls, in any
state of D-FSM, a system call is considered an
unexpected system call (i.e., UNEXP in Table 3) if it
has no transition rules defined in Table 3. Since each
operation in the deletion process has been mapped to
a system call or a set of ordered system calls, once
an unexpected system call occurs, D-FSM enters the
exception final state (QE) and generates a measurement
event of the unexpected system call (i.e., UNEXP info
in Table 3) to trigger IMA to measure it. Then, D-FSM
returns to the initial state (Q0). The sequence diagram
of D-FSM is shown in Figure 4.

TABLE 3. The state transition table of D-FSM.

Current State Event Next State Operation

Q0 open Init open -

Init open fstat Init fstat -

Init fstat fcntl Init fcntl -

Init fcntl fcntl Init fcntl INITIAL

Init fcntl lseek Do lseek -

Do lseek write Do write -

Do write write Do write -

Do write sync Do sync OVERWRITE

Do sync lseek Do lseek -

Do sync fcntl Do fcntl FCNTL

Do sync ftruncate Do ftruncate FTRUNCATE

Do fcntl lseek Do lseek -

Do ftruncate close Do close CLOSE

Do close rename Do rename -

Do rename rename Do rename -

Do rename sync Do rename RENAME

Do rename unlink QS UNLINK

Any state UNEXP1 QE UNEXP opinfo2

UNEXP1: unexpected system call. UNEXP info2: information of
unexpected system call .

5.4. Measuring Operations in the Deletion
Process

Directly using IMA to measure operations in the dele-
tion process suffers from two limitations: 1) The
original IMA does not perform duplicate measure-
ments on the same measurement objects. However,
the overwriting-based deletion process involves multi-
ple overwriting and renaming, all these operations are
required to be measured to generate detailed measure-
ment results for the deletion process. 2) The original
IMA records all measurement results together. During
the verification process in IPOD2, users need to retrieve
the measurement results corresponding to specific data.
Storing all measurement results together would not only
incur a significant overhead of communication and ver-
ification but also leak information about other data or
users.

To enable IMA to measure the repeated operations
in the deletion process, we modified the IMA’s
measurement logic for measurement objects in IPOD2.
Specifically, we found that IMA uses a measured flag
to mark repeated measurement objects and ignores
them during measurement. In IPOD2, we reset the
flag of all measurement objects before measurement
to enable IMA to measure them repeatedly. Besides,
to make the measurement results of operations in the
deletion process more detailed, we enrich the content
of measurement results related to the operations in
IPOD2. If IMA receives a measurement event from

E S

open & fstat&

fcntl & fcntl

lseek

write | lseek | sync | fcntl

ftruncate

close

unlink

rename | sync

sync

rename

initial

state

intermediate

state
E

exception

final state
S

success

final state

transitions of

expected system calls

transitions of

unexpected system calls

FIGURE 4. The sequence diagram of D-FSM.

D-FSM, it appends the information on the timestamp,
operator, and operation type to the measurement
results.

To partition the measurement results of different
outsourced data, we introduce a Splitter to split the
measurement results and store them separately based
on the identifier of the data involved in measurement
results. However, the number of PCRs in TPM is
limited to 24, making it impossible to protect the
measurement results of each data with independent
physical PCRs.

To address this issue, we designed a file-based
Platform Configuration Register (fPCR) module to
provide independent and TPM-based protection for
the measurement results of different data. The fPCR
module maintains a set of fPCRs and assigns one fPCR
for each data. An fPCR refers to a software PCR, which
simulates the physical PCR to record the digest of the
measurement results associated with the corresponding
data. As illustrated in Figure 2, for the purpose of
utilizing a single physical PCR to protect any number of
fPCRs, fPCRs are organized in the form of Merkle Hash
Tree (MHT), where its leaf nodes are fPCRs. Besides,
to facilitate management and flexibly handling varying
amounts of data, the number of fPCRs on each MHT is
fixed, and fPCR module will create a new MHT when
the fPCRs are exhausted. The assigned fPCRs’ values
are the digest of the measurement results (e.g., Digest1
in Figure 2), while the unassigned fPCRs are filled with
random numbers (i.e., RN in Figure 2). The MHT’s
root value is calculated based on the leaf nodes’ values,
and all MHTs’ root values are extended into the selected
physical PCR (i.e., PCR11) sequentially.

In this way, we establish a chain of trust from TPM
to the measurement results, where the physical PCR in
TPM protects the integrity of MHTs, MHTs protect the
integrity of all fPCRs, and fPCRs protect the integrity
of the measurement results.

Once a measurement result is generated, the workflow
of fPCR module is as follows:

1. Extend the current measurement result into the
corresponding fPCR as follows.

target-fPCR := Hash(target-fPCR,MR.digest)

where target-fPCR refers to the fPCR corre-
sponding to the outsourced data associated with
the current measurement result, MR.digest refers
to the digest of the current measurement result.

2. Recalculate the root value of MHT containing the
target-fPCR as follows.

{
root := target-fPCR
root := Hash(root||nodei)

, (nodei ∈ AAI)

(1)

where root refers to the root value of MHT con-
taining the target-fPCR, AAI refers to the Aux-
iliary Authentication Information of target-fPCR,
which is an array that includes the sibling nodes on
the path from target-fPCR to root, nodei refers
to a sibling node contained within AAI.

3. Record the current value of PCR11 as historyPCR,
which is used to verify target-fPCR.

4. Calculate the digest of all MHTs’ root values as
follows.

rDigest := {0x0}40
rDigest := HASH(rDigest || rooti)

(2)

where rDigest refers to the digest of all MHTs’
root values, initialized as {0x0}40 at the beginning
of the computation and calculated by sequentially
hashing all MHTs’ root values, rooti refers to a
MHT’s root value.

5. Extend the physical PCR11 with rDigest as
follows.

PCR11 := PCR Extend(PCR11, rDigest)

5.5. Verifying the Deletion of Outsourced Data

This section shows how to enable the user to verify the
outsourced data deletion. Our verification process is
derived from the remote attestation [41], which includes
two stages: 1) upon receiving the user’s verification
request, CSP collects the deletion proof and sends it
to the user; 2) the user verifies the outsourced data
deletion based on the deletion proof.

Message Transferring: When verifying the deletion
of outsourced data, the user sends a request with the

identifier of the data and a nonce. nonce is used
to ensure the freshness of the response of CSP and
prevent replay attacks. Upon receiving the request,
CSP collects the deletion proof of the corresponding
data and sends it to the user. The deletion proof (D P)
consists of five parts, which are detailed below.

D P = {Sign{PCRs||nonce,AIK}, PCRs,MHTs,

fPCR,AAI,MRs}

where Sign{PCRs||nonce,AIK} denotes the signature
generated by TPM’s AIK for PCRs and nonce, PCRs
consist of the values of PCR0−7 and PCR11, MHTs
include the old value of PCR11 (historyPCR) and root
values of all MHTs, fPCR refers to the value of the
fPCR associated with MRs, AAI refers to the the
sibling nodes of fPCR, and MRs is the measurement
results of the data deletion process.

Workflow of Verification: IPOD2 establishes a chain
of trust from TPM to the measurement results. Based
on the deletion proof provided by CSP, the verification
process in our scheme includes two stages: 1) The
user verifies whether the measurement results have been
tampered with or forged. 2) Based on the content of the
measurement results that have not been tampered with
or forged, the user verifies whether the data has been
deleted as required.

To determine whether the measurement results have
been tampered with or forged, the user verifies the
measurement results with the following five steps:

• The user utilizes TPM’s AIK certificate to verify
the correctness of Sign{PCRs||nonce,AIK}. Af-
terward, the user compares the values of received
PCRs with those in the correct signature to en-
sure that the values of the received PCRs have
not been tampered with or forged. If the values of
the received PCRs match those in the signature,
we consider the values of the received PCRs are
trusted. nonce is used to assess the freshness of
the signature.

• Based on the trusted PCR0−7 values, the user
verifies whether the bootstrapping process of CSP’s
platform is correct.

• Based on the trusted PCR11 value, the user
verifies whether the received fPCR is trusted.
Specifically, the user generates a digest of the
received MHTs according to the equation 2. The
received MHTs is trusted if the digest equals
PCR11 value. The user can obtain the trusted
root value of MHT containing the received fPCR
(denoted as rootfPCR). The user calculates a
simulated root value of the received fPCR and
AAI according to the equation 1. The received
fPCR is considered trustworthy, if the simulated
root value equals to rootfPCR.

FIGURE 5. An example of the measurement results of data deletion. These measurement results are corresponding to the
file /root/secret.txt. Each measurement result contains three parts: the digest of the measurement result (Digest), the hash
value of the file being operated (File Hash), and the metadata of the sub-operation (Op info). We omit some values in the
‘Digest’ and ‘File Hash’ parts for better clarity in the display. The ‘Op infor’ part includes the operation time (timestamp),
the operator (UID and PID), and the operation type (op type).

• Based on the trusted fPCR value, the user
verifies whether the received measurement results
are trusted and have not been tampered with or
forged by anyone as follows.{

sDigest = {0x0}40
sDigest = Hash(sDigest||Hash(ei))

, (ei ∈ MRs)

sDigest
?
= fPCR

where sDigest refers to a simulated digest of
the received measurement results (MRs) and is
initialized to {0x0}40 at the beginning of the
computation, ei refers to an entry included in
MRs. If sDigest equals the value of fPCR, it
indicates that the received measurement results
(MRs) are trusted.

Based on the trusted measurement results, the user
can determine whether CSP has performed the expected
deletion of the outsourced data as required. Figure 5
gives an example of the measurement results of the
deletion process, which records the detailed information
of the operations in the deletion process. According
to the content of measurement results, it is clear that
after initialization, the data is overwritten three times,
truncated one time, renamed ten times, and unlinked
one time. This is a complete and correct overwriting-
based deletion process. The measurement results
indicate that CSP has deleted the data as required.
Besides, the user can further assess whether the
execution of operations aligns with his/her expectations
by examining the detailed information (e.g., timestamp,
operator) recorded in the measurement results.

Since the verified measurement results are protected
by TPM and are trusted, they cannot be tampered with
or forged by anyone. If CSP has faithfully completed
the deletion, the trusted measurement results can be

used to prove the CSP’s innocence and resist the slander
of misbehaving user.

6. EVALUATION

To evaluate our design, we implement a prototype of
IPOD2 on Ubuntu 20.04 with Linux kernel 5.4.120. We
evaluate the prototype on Lenovo Savior R9000 with a
12-cores, 2.66GHz Intel i7-9750H CPU. For each test,
we run 20 times to get the average result.

We evaluate IPOD2 to answer the following three
key questions: (1) How much does IPOD2 affect the
performance of the kernel? (2) How is the performance
of the deletion measurement and proof verification
in IPOD2? (3) What are the advantages of IPOD2
compared with existing schemes?

6.1. Overhead of IPOD2

To answer the first question, we evaluate the modified
kernel in three aspects: 1) the number of added codes;
2) the overhead of the modified system calls; and 3) the
overhead of the specific APIs.

The Number of Added Codes: We count the
number of added codes in IPOD2 according to the
SLOC3. The added codes can be divided into two
categories: Struct (custom data structures) and Func
(additional functions and methods). As shown in
Table 4, the added codes are distributed in five parts:
Deletion Hooks, Splitter, D-FSM, fPCR Module, and
IMA. The added codes concentrated in the Deletion
Hooks and fPCR Module, which are 325 LOCs and
839 LOCs respectively. The total number of added
codes in IPOD2 is 1528 LOCs, less than 0.01% of the
number of total codes in the kernel (27.8 million LOCs),
which indicates that IPOD2 does not make significant

3https://en.wikipedia.org/wiki/Source_lines_of_code

https://en.wikipedia.org/wiki/Source_lines_of_code

TABLE 4. Added code of IPOD2.

Partition
Category (LoC)

Struct Func Total

Deletion Hooks 17 308 325

Splitter - 27 27

D-FSM 9 159 168

fPCR Module 75 764 839

IMA 23 146 169

Total 124 1404 1528

modifications to the kernel.

Overhead of the System Calls: We invoke each
system call 10 million times in each test to reduce
deviation. As shown in the left part of Table 5, for most
system calls, the additional cost of the ‘IPOD2’ setting
is no more than 0.1µs and the additional percent is no
more than 10%. For system calls like write and unlink,
the additional cost of the ‘IPOD2’ setting is less than
0.3µs and the additional percent is less than 15%.

Overhead of the Specific APIs: We select several
representative basic APIs to evaluate the overall
performance of the kernel. We evaluate the overhead
of these basic APIs by using LMbench3 [25], which is a
well-known benchmark tool. As shown in the right part
of Table 5, for most APIs, the result of the ‘IPOD2’
setting is the same as the ‘Origin’ setting. For some
APIs (e.g., exec), the overhead of the ‘IPOD2’ setting
is slightly larger than the ‘Origin’ setting (the additional
percent is no more than 1%). This is because deletion
hooks check xattr of files, which brings tiny additional
overhead. According to the evaluation results, the
overall performance of the kernel in the ‘IPOD2’ setting
is close to that of the ‘Origin’ setting.

6.2. Performance of Deletion and Verification
in IPOD2

To answer the second question, we evaluate the
overhead of the deletion and verification in IPOD2. In
the following experiments, we choose files with sizes
from 100K to 1G. The used deletion algorithm includes
3 overwrites, 10 renames, 1 truncate, and 1 unlink.

Performance of Deletion: Figure 6 presents the
deletion overhead of the ‘Origin’ setting and ‘IPOD2’
setting. We regard the increment of the ‘IPOD2’ setting
relative to the ‘Origin’ setting as the measurement
overhead introduced by IPOD2. As shown in Figure 6,
the measurement overhead slowly increases with the file
size. This is because overwriting larger files involves
more write system calls, resulting in more executions
of the deletion hook and state transitions of D-FSM,
consuming more time. When the file is small (i.e.,
100K), the measurement overhead is equal to the

TABLE 5. The performance evaluation results of system
calls and APIs. The ‘Origin’ setting refers to the original
kernel, and the ‘IPOD2’ setting refers to the kernel with
IPOD2. The percent overhead calculation against the
‘Origin’ setting is shown at the end of the ‘IPOD2’ setting.

System

Call
Origin IPOD2 API Origin IPOD2

overhead(µs) - smaller is better overhead(µs) - smaller is better

open 0.92 0.98(+6.52%) null call 0.28 0.28(0.00%)

fstat 0.39 0.40(+2.60%) null I/O 0.36 0.36(0.00%)

fcntl 0.32 0.34(+6.52%) stat 0.60 0.60(0.00%)

lseek 0.36 0.38 (+5.55%) open/close 1.65 1.65(0.00%)

write 0.30 0.34(+13.33%) signal install 0.34 0.34(0.00%)

ftruncate 0.31 0.32(+3.23%) signal handle 0.90 0.90(0.00%)

close 0.59 0.63(+6.78%) fork process 76.80 76.80(0.00%)

rename 3.37 3.63(+7.71%) exec process 377.60 377.80(+0.01%)

unlink 1.88 2.14(+13.83%) sh process 3025.40 3031.30(+0.20%)

fdatasync 50.33 50.58(+0.50%)

fsetxattr 1.50 1.54(+2.67%)

read 0.44 0.45(+2.27%)

FIGURE 6. Deletion overheads for each setting. The
‘Origin’ setting refers to the deletion overhead in the original
kernel, and the ‘IPOD2’ setting refers to the deletion
overhead of the kernel with IPOD2. ‘Increment’ setting
refers to the measurement overhead of IPOD2 during the
deletion process.

deletion overhead in the ‘Origin’ setting. As the file
size increases, the impact of measurement overhead on
deletion overhead becomes smaller.

Performance of Verification: Figure 7 presents the
time cost of the different phases in the verification
process. The process of collecting the deletion proof
by CSP consists of two phases: tpm-quote (CSP collects
the PCRs’ value and generates a signature of TPM) and
proof-collect (CSP collects the measurement results,
corresponding fPCR, and MHTs’ values). The process
of verifying the deletion proof by the user consists of two
phases: tpm-checkquote (the user verifies the signature
and PCRs’ value) and proof-verify (the user validates

TABLE 6. The time cost of the deletion and verification processes in different schemes. We evaluate the time cost of different
files with the size of 100KB, 1MB, and 10MB.

Schemes

Processes
Outsourced Data Deletion Verification

Preprocessing (ms) Deletion (ms) Total (ms) Total (ms)

100KB 1MB 10MB 100KB 1MB 10MB 100KB 1MB 10MB 100KB 1MB 10MB

Tang et al. [10] 4 40 400 300 (fixed) 304 340 700 -

Xue et al. [15] 50 140 520 130 (fixed) 180 270 650 130 (fixed)

Zhang et al. [16] 0 735 750 827 735 750 827 825 831 889

IPOD2 0 147 151 219 147 151 219 25 (fixed)

FIGURE 7. The time cost of the different phases in the
verification process.

the deletion proof based on the trusted PCRs’ value).
Besides, the network phase includes the communication
overhead of the user (request) and CSP (response). In
IPOD2, the size of measurement results is related to the
operations in the deletion process, which is independent
of the data size. For a fixed deletion process, the
size of the measurement results is constant for files of
different sizes. As shown in Figure 7, the time cost of
the whole verification process is 452.9ms, where tpm-
quote is 428ms (94.54% of the whole process). The
verification overhead of deletion proof on the user side
is less than 14 ms, including tpm-checkquote phase and
proof-verify phase.

6.3. Comparing IPOD2 with Existing Schemes

In this section, we compare IPOD2 with the other three
representative existing schemes [10, 15, 16] in terms of
the overhead of data deletion and proof verification.

We follow [10] to reproduce the cryptographic
operations used in their scheme by invoking the
OpenSSL library4. And we follow [15] to reproduce the
project, where elliptic curves are chosen by calling the
Miracl library5 API and set security parameter λ = 80
to satisfy the security requirements. Regarding [16],
consistent with the settings in their paper, the used

4http://www.openssl.org/
5https://certivox.org/display/EXT/MIRACL

PDP scheme is derived from [54], the hash functions
used in the deletion and verification processes are
implemented by APHash, and each deletion process
includes one overwriting where a user-defined data
sequence used to overwrite. In IPOD2, we overwrite
the data three times with the random data during the
deletion process.

Deletion Process: All these Key management-
based schemes [10, 15] take encrypting data as their
preprocessing step for data deletion. They encrypt the
data before outsourcing and later delete the data by
discarding the corresponding key [10] or re-encrypting
the data [15]. To evaluate the overall overhead
of outsourced data deletion in these schemes, we
consider the overhead of encrypting data as part of the
overhead of outsourced data deletion overhead in these
schemes. Zhang et al. [16] and IPOD2 are overwriting-
based schemes without the preprocessing process. To
accurately evaluate and compare the deletion overhead
of all schemes, we select data with different sizes,
ranging from 100KB to 10MB.

As shown in Table 6, since Tang et al. [10] encrypt
data with a symmetric encryption technique, its
preprocessing overhead exhibits a linear relationship
with the data size. Xue et al. [15] utilize KP-ABE for
data encryption, with the preprocessing overhead also
raised with the data size. These two schemes benefit
from operating on fixed-size data during deletion, i.e.,
deleting the corresponding key [10] or re-encrypting a
part of the ciphertext [15]. Consequently, their deletion
overhead is fixed, where the deletion overhead of [15]
is minimal as it only requires one exponentiation. As
for [16], during the deletion process, it first derives the
data sequence used for overwriting based on a user-
defined seed, then overwrites the original data with this
data sequence, and finally generates tags of overwritten
data based on PDP for verification. In contrast, for
IPOD2, during the deletion process, it overwrites the
original data with random data three times. Therefore,
the deletion overhead of IPOD2 is significantly smaller
than that of [16]. From the perspective of the
overall deletion overhead of the scheme, across these
schemes, IPOD2 incurs the minimum deletion overhead
regardless of the deleted data size.

http://www.openssl.org/
https://certivox.org/display/EXT/MIRACL

Verification Process: Regarding the verification
overhead of the schemes, we evaluate the overall
verification overhead including the transmission and
verification overheads of deletion proofs. In [15],
since the small size of the re-encrypted result, the
transmission overhead of deletion proof is negligible.
The verification of deletion proofs includes the re-
encryption and the comparison of the re-encryption
results on the user side, where the overhead of
comparison is negligible. Therefore, the overall
verification overhead is equal to the deletion overhead.
As for [16], it returns the overwritten results as deletion
proofs for users to verify, resulting in the transmission
and verification overheads of deletion proofs increasing
with the size of the deleted data. In IPOD2, the deletion
proof returned by CSP is small and independent of data
size. Meanwhile, the verification of the deletion proof
involves several hash operations and the comparison of
the hash result and PCR’s value. According to the
evaluation of verification in Section 6.2, IPOD2 incurs
the fixed overall verification overhead regardless of the
deleted data size, which is the smallest among these
schemes.

7. DISCUSSION

Even though IPOD2 satisfies the properties of
the outsourced data deletion scheme and addresses
the security and privacy problems in the deletion
measurement and proof verification process, IPOD2 can
be improved in the future, and we discuss it as follows.

Host Reboot: PCRs, fPCRs, and the measurement
results generated by IMA will be reset and cleared after
the host reboot, which causes the loss of the previous
measurement results. But actually, the current cloud
platform generally adopts uninterruptible power supply
and hot backup technologies to ensure the availability
and continuity of services. The hosts that are backups
of each other perform the same operations and provide
the same services. Therefore, we have reason to believe
that the host reboot has little impact on our scheme.

Applicability: IPOD2 introduces a new design for a
verifiable outsourced data deletion solution based on
trusted hardware. The current prototype of IPOD2
is implemented on a Linux kernel with TPM, and it
applies to magnetic media storage devices that support
in-place updates by overwriting. We plan to address the
porting of IPOD2 to other platforms and adaptation for
SSDs and file systems with journaling or snapshots in
future work.

8. CONCLUSION

This paper introduces IPOD2, a new solution for
irrecoverable and verifiable outsourced data deletion.
IPOD2 extends IMA to measure the operations in
the deletion process and protects the measurement
results by TPM for verification. Based on the mapping

between operations in the deletion process and system
calls, IPOD2 utilizes the deletion hooks and D-FSM
to identify the operations according to the execution
sequence of system calls. The identified operations are
further measured by IMA, and the measurement results
of them are protected by TPM. In this way, the user can
verify whether the data has been deleted as required
according to the trustworthy measurement results. The
performance evaluation demonstrated that IPOD2 has
good performance and brings acceptable overhead for
each participant.

SOURCE CODE AVAILABILITY STATE-
MENT

IPOD2 is publicly available as an open-source project:
https://github.com/PKURoC/IPOD2

CONFLICT OF INTEREST

The authors declare that they have no known competing
financial interests or personal relationships that could
have appeared to influence the work reported in this
paper.

ACKNOWLEDGEMENTS

This work was supported by the National Key R&D
Program of China [Grant No. 2022YFB2703301]; and
the National Natural Science Foundation of China
[Grant No. 61672062, No. 61232005].

REFERENCES

[1] Liu, Z., Wang, S., and Liu, Y. (2023) Blockchain-based
integrity auditing for shared data in cloud storage with
file prediction. Comput. Networks, 236, 110040.

[2] Wang, T., Zhou, Y., Ma, H., and Zhang, R. (2023)
Flexible and controllable access policy update for
encrypted data sharing in the cloud. Comput. J., 66,
1507–1524.

[3] Lin, H., Zhao, Z., Gao, F., Susilo, W., Wen, Q.,
Guo, F., and Shi, Y. (2021) Lightweight public
key encryption with equality test supporting partial
authorization in cloud storage. Comput. J., 64, 1226–
1238.

[4] Parast, F. K., Sindhav, C., Nikam, S., Yekta, H. I.,
Kent, K. B., and Hakak, S. (2022) Cloud computing
security: A survey of service-based models. Comput.
Secur., 114, 102580.

[5] Luo, F., Al-Kuwari, S. M., Lin, C., Wang, F., and
Chen, K. (2022) Provable data possession schemes from
standard lattices for cloud computing. Comput. J., 65,
3223–3239.

[6] Islam, S., Ouedraogo, M., Kalloniatis, C., Mouratidis,
H., and Gritzalis, S. (2018) Assurance of security and
privacy requirements for cloud deployment models.
IEEE Trans. Cloud Comput., 6, 387–400.

[7] Hao, J., Liu, J., Wu, W., Tang, F., and Xian, M. (2020)
Secure and fine-grained self-controlled outsourced data
deletion in cloud-based iot. IEEE Internet Things J.,
7, 1140–1153.

https://github.com/PKURoC/IPOD2

[8] Sadowski, J., Viljoen, S., and Whittaker, M. (2021)
Everyone should decide how their digital data are used
- not just tech companies. Nature, 595, 169–171.

[9] Geambasu, R., Kohno, T., Levy, A. A., and Levy,
H. M. (2009) Vanish: Increasing data privacy with self-
destructing data. Proceedings of the 18th USENIX Sec-
urity Symposium (USENIX Security 2009), Montreal,
Canada, 10-14 August, pp. 299–316. USENIX Associa-
tion, Berkeley.

[10] Tang, Y., Lee, P. P. C., Lui, J. C. S., and Perlman,
R. J. (2012) Secure overlay cloud storage with access
control and assured deletion. IEEE Trans. Dependable
Secur. Comput., 9, 903–916.

[11] European Parliament and Council of the European
Union (2016). Regulation (EU) 2016/679 of the
european parliament and of the council on the
protection of natural persons with regard to the
processing of personal data and on the free movement
of such data. https://eur-lex.europa.eu/eli/reg

/2016/679/oj. (accessed on 1 April 2024).

[12] Gamvros, A. and Wang, L. (2021). PIPL: A game
changer for companies in china. https://www.data

protectionreport.com/2021/08/pipl-a-game-cha

nger-for-companies-in-china/. (accessed on 20
October 2023).

[13] Castelluccia, C., Cristofaro, E. D., Francillon, A.,
and Kâafar, M. A. (2011) Ephpub: Toward robust
ephemeral publishing. Proceedings of the 19th annual
IEEE International Conference on Network Protocols
(ICNP 2011), Vancouver, BC, Canada, 17-20 October,
pp. 165–175. IEEE Computer Society, Washington, DC.

[14] Mo, Z., Xiao, Q., Zhou, Y., and Chen, S. (2014)
On deletion of outsourced data in cloud computing.
Proceedings of 7th IEEE International Conference on
Cloud Computing (IEEE CLOUD 2014), Anchorage,
AK, 27 June - 2 July, pp. 344–351. IEEE Computer
Society, Washington, DC.

[15] Xue, L., Yu, Y., Li, Y., Au, M. H., Du, X., and
Yang, B. (2019) Efficient attribute-based encryption
with attribute revocation for assured data deletion. Inf.
Sci., 479, 640–650.

[16] Zhang, M., Zhang, H., Yang, Y., and Shen, Q. (2019)
PTAD: provable and traceable assured deletion in cloud
storage. Proceedings of IEEE Symposium on Comput-
ers and Communications (ISCC 2019), Barcelona, Spa-
in, 29 June - 3 July, pp. 1–6. IEEE, New York.

[17] Perlman, R. J. (2007) File system design with assured
delete. Proceedings of the Network and Distributed
System Security Symposium (NDSS 2007), San Diego,
California, 28 February - 2 March, pp. 83–88. The
Internet Society, Reston.

[18] Tang, Q. (2015) From ephemerizer to timed-
ephemerizer: Achieve assured lifecycle enforcement for
sensitive data. Comput. J., 58, 1003–1020.

[19] Mo, Z., Qiao, Y., and Chen, S. (2014) Two-party fine-
grained assured deletion of outsourced data in cloud
systems. Proceedings of the 34th IEEE International
Conference on Distributed Computing Systems (ICDCS
2014), Madrid, Spain, 30 June - 3 July, pp. 308–317.
IEEE Computer Society, Washington, DC.

[20] Perito, D. and Tsudik, G. (2010) Secure code
update for embedded devices via proofs of secure

erasure. Proceedings of the 15th European Symposium
on Research in Computer Security (ESORICS 2010),
Athens, 20-22 September, pp. 643–662. Springer,
Berlin.

[21] Kissel, R., Regenscheid, A., and Scholl, M. NIST
Special Publication 800-88 Revision 1: Guidelines for
media sanitization. https://nvlpubs.nist.gov/nis

tpubs/SpecialPublications/NIST.SP.800-88r1.pdf.
(accessed on 7 December 2023).

[22] Plumb, C. shred - linux man page. https://linux.di
e.net/man/1/shred. (accessed on 20 October 2023).

[23] Durak, B. wipe - linux man page. https://linux.di

e.net/man/1/wipe. (accessed on 20 October 2023).

[24] Jagdmann, D. srm - linux man page. https://linux.
die.net/man/1/srm. (accessed on 20 October 2023).

[25] McVoy, L. W. and Staelin, C. (1996) lmbench: Portable
tools for performance analysis. Proceedings of the
USENIX Annual Technical Conference (USENIX ATC
1996), San Diego, California, 22-26 January, pp. 279–
294. USENIX Association, Berkeley.

[26] Shamir, A. (1979) How to share a secret. Commun.
ACM, 22, 612–613.

[27] Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006)
Attribute-based encryption for fine-grained access
control of encrypted data. Proceedings of the 13th ACM
Conference on Computer and Communications Security
(CCS 2006), Alexandria, VA, 30 October - 3 November,
pp. 89–98. ACM, New York.

[28] Ateniese, G., Burns, R. C., Curtmola, R., Herring,
J., Kissner, L., Peterson, Z. N. J., and Song, D. X.
(2007) Provable data possession at untrusted stores.
Proceedings of ACM Conference on Computer and
Communications Security (CCS 2007), Alexandria,
Virginia, 28-31 October, pp. 598–609. ACM, New York.

[29] Reardon, J., Basin, D. A., and Capkun, S. (2013)
SoK: Secure data deletion. 2013 IEEE Symposium
on Security and Privacy (S&P 2013), Berkeley, CA,
19-22 May, pp. 301–315. IEEE Computer Society,
Washington, DC.

[30] Gutmann, P. (1996) Secure deletion of data from
magnetic and solid-state memory. Proceedings of the
6th USENIX Security Symposium (USENIX Security
1996), San Jose, CA, 22 – 25 July, pp. 77–89. USENIX
Association, Berkeley.

[31] Pfitzner. Pfitzner deletion method. https://www.li

fewire.com/data-sanitization-methods-2626133.
(accessed on 2 April 2024).

[32] Schneier, B. (2007) Applied cryptography: protocols,
algorithms, and source code in C. john wiley & sons,
Hoboken.

[33] Naval Information Systems Management Center.
Information systems security (INFOSEC) program
guidelines. https://irp.fas.org/doddir/navy/52

39_26.htm. (accessed on 17 October 2023).

[34] U.S. Department of Defense. National industrial
security program operating manual (NISPOM). http

s://www.federalregister.gov/documents/2020/12/

21/2020-27698/national-industrial-security-pro

gram-operating-manual-nispom. (accessed on 2 April
2024).

[35] Communication Security Establishment of Canada.
It security guidance 06: Clearing and declassifying

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.dataprotectionreport.com/2021/08/pipl-a-game-changer-for-companies-in-china/
https://www.dataprotectionreport.com/2021/08/pipl-a-game-changer-for-companies-in-china/
https://www.dataprotectionreport.com/2021/08/pipl-a-game-changer-for-companies-in-china/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
https://linux.die.net/man/1/shred
https://linux.die.net/man/1/shred
https://linux.die.net/man/1/wipe
https://linux.die.net/man/1/wipe
https://linux.die.net/man/1/srm
https://linux.die.net/man/1/srm
https://www.lifewire.com/data-sanitization-methods-2626133
https://www.lifewire.com/data-sanitization-methods-2626133
https://irp.fas.org/doddir/navy/5239_26.htm
https://irp.fas.org/doddir/navy/5239_26.htm
https://www.federalregister.gov/documents/2020/12/21/2020-27698/national-industrial-security-program-operating-manual-nispom
https://www.federalregister.gov/documents/2020/12/21/2020-27698/national-industrial-security-program-operating-manual-nispom
https://www.federalregister.gov/documents/2020/12/21/2020-27698/national-industrial-security-program-operating-manual-nispom
https://www.federalregister.gov/documents/2020/12/21/2020-27698/national-industrial-security-program-operating-manual-nispom

electronic data storage devices. https://cyber.gc.c

a/en/guidance/it-media-sanitization-itsp40006.
(accessed on 1 December 2023).

[36] The United States Air Force. Air force system security
instruction 5020. https://cryptome.org/afssi5020

.htm. (accessed on 1 December 2023).

[37] Communications Electronics Security Group. HMG
IA/IS 5 Secure Sanitisation of Protectively Marked
Information or Sensitive Information document. http

s://www.lifewire.com/data-sanitization-methods

-2626133. (accessed on 16 October 2023).

[38] New Zealand Information Technology Security Author-
ity. The new zealand information security manual.
https://www.gcsb.govt.nz/publications/the-n

z-information-security-manual/. (accessed on 3
October 2023).

[39] TCG Specification. (2007) Architecture overview.
Specification Revision, 1, 1–24.

[40] Arthur, W., Challener, D., and Goldman, K. (2015) A
Practical Guide to TPM 2.0: Using the New Trusted
Platform Module in the New Age of Security. Apress,
New York.

[41] Intel. Remote Attestation. https://tpm2-software.

github.io/tpm2-tss/getting-started/2019/12/1

8/Remote-Attestation.html. (accessed 20 December
2023).

[42] Sailer, R., Zhang, X., Jaeger, T., and van Doorn, L.
(2004) Design and implementation of a TCG-based
integrity measurement architecture. Proceedings of the
13th USENIX Security Symposium (USENIX Security
2004), San Diego, CA, 9-13 August, pp. 223–238.
USENIX, Berkeley.

[43] Son, J., Koo, S., Choi, J., Cho, S., Baek, S., Jeon,
G., Park, J., and Kim, H. (2017) Quantitative analysis
of measurement overhead for integrity verification.
Proceedings of the Symposium on Applied Computing
(SAC 2017), Marrakech, Morocco, 3-7 April, pp. 1528–
1533. ACM, New York.

[44] Jaeger, T., Sailer, R., and Shankar, U. (2006) PRIMA:
policy-reduced integrity measurement architecture.
Proceedings of the 11th ACM Symposium on Access
Control Models and Technologies (SACMAT 2006),
California, 7-9 June, pp. 19–28. ACM, New York.

[45] Luo, W., Liu, W., Luo, Y., Ruan, A., Shen, Q., andWu,
Z. (2016) Partial attestation: Towards cost-effective
and privacy-preserving remote attestations. Proceed-
ings of IEEE Trustcom/BigDataSE/ISPA, Tianjin, 23-
26 August, pp. 152–159. IEEE, New York.

[46] Rauter, T., Höller, A., Kajtazovic, N., and Kreiner,
C. (2015) Privilege-based remote attestation: Towards
integrity assurance for lightweight clients. Proceedings
of the 1st ACM Workshop on IoT Privacy, Trust,
and Security (IoTPTS@AsiaCCS 2015), Singapore, 14
April, pp. 3–9. ACM, New York.

[47] Stumpf, F., Fuchs, A., Katzenbeisser, S., and
Eckert, C. (2008) Improving the scalability of platform
attestation. Proceedings of the 3rd ACM Workshop on
Scalable Trusted Computing (STC 2008), Alexandria,
VA, 31 October, pp. 1–10. ACM, New York.

[48] Davi, L., Sadeghi, A., and Winandy, M. (2009)
Dynamic integrity measurement and attestation:
towards defense against return-oriented programming

attacks. Proceedings of the 4th ACM Workshop on
Scalable Trusted Computing (STC 2009), Chicago,
Illinois, 13 November, pp. 49–54. ACM, New York.

[49] Luo, W., Shen, Q., Xia, Y., and Wu, Z. (2019)
Container-ima: A privacy-preserving integrity mea-
surement architecture for containers. Proceedings of the
22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), Chaoyang Dis-
trict, Beijing, 23-25 September, pp. 487–500. USENIX
Association, Berkeley.

[50] Benedictis, M. D. and Lioy, A. (2019) Integrity
verification of docker containers for a lightweight cloud
environment. Future Gener. Comput. Syst., 97, 236–
246.

[51] Lu, D., Han, R., Shen, Y., Dong, X., Ma, J.,
Du, X., and Guizani, M. (2021) xTSeH: A trusted
platform module sharing scheme towards smart iot-
ehealth devices. IEEE J. Sel. Areas Commun., 39,
370–383.

[52] Noman, A. and Adams, C. (2014) Hardware-
based dlas: Achieving geo-location guarantees for
cloud data using tpm and provable data possession.
Proceedings of International Conference on Computer
and Information Technology (ICCIT 2014), Dhaka,
Bangladesh, 22-23 December, pp. 236–246. IEEE, New
York.

[53] Richard, M., Ning, S., Shane, W., Jimmy, W., and Ren,
Q. Trusted boot (tboot). https://trustedcomputing

group.org/resource/trusted-boot/. (accessed on 7
December 2023).

[54] Ateniese, G., Burns, R. C., Curtmola, R., Herring,
J., Kissner, L., Peterson, Z. N. J., and Song, D. X.
(2007) Provable data possession at untrusted stores.
Proceedings of the 2007 ACM Conference on Computer
and Communications Security (CCS 2007), Alexandria,
Virginia, 28-31 October, pp. 598–609. ACM, New York.

https://cyber.gc.ca/en/guidance/it-media-sanitization-itsp40006
https://cyber.gc.ca/en/guidance/it-media-sanitization-itsp40006
https://cryptome.org/afssi5020.htm
https://cryptome.org/afssi5020.htm
https://www.lifewire.com/data-sanitization-methods-2626133
https://www.lifewire.com/data-sanitization-methods-2626133
https://www.lifewire.com/data-sanitization-methods-2626133
https://www.gcsb.govt.nz/publications/the-nz-information-security-manual/
https://www.gcsb.govt.nz/publications/the-nz-information-security-manual/
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://trustedcomputinggroup.org/resource/trusted-boot/
https://trustedcomputinggroup.org/resource/trusted-boot/

	Introduction
	Related Work
	background
	Overwriting
	Integrity Measurement Architecture

	Problem Statement
	System Model
	Threat Model
	Goals

	Design of IPOD2
	Overview
	Mapping Operations to System Calls
	Identifying Measurement Objects
	Measuring Operations in the Deletion Process
	Verifying the Deletion of Outsourced Data

	Evaluation
	Overhead of IPOD2
	Performance of Deletion and Verification in IPOD2
	Comparing IPOD2 with Existing Schemes

	Discussion
	Conclusion

