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Abstract—In recent years, cloud providers are dedicated to
enabling FPGA multi-tenancy to improve resource utilization,
but this new sharing model introduces power side-channel
threats, where attackers detect voltage fluctuations from co-
located circuits. This paper proposes LeakyDSP, a novel on-
chip sensor that maliciously configures DSP blocks to sense
fine-grained voltage fluctuations but is overlooked by existing
studies. Our experimental results show that LeakyDSP achieves
high sensitivity to voltage fluctuations and strong robustness to
different placements. Besides, we apply LeakyDSP to extract full
AES keys with 25 k-78 k traces and build covert channels with a
high transmission rate of 247.94 bit/s.

I. INTRODUCTION

In recent years, leading commercial cloud service providers
such as Amazon AWS [4], Alibaba [2], and Microsoft
Azure [5] have introduced remote access to high-performance
Field Programmable Gate Arrays (FPGAs) [7]. To maximize
FPGA utilization efficiency, both academia and industry have
focused their efforts on enabling the co-residence of FPGA
circuits by independent tenants, referred to as multi-tenant
FPGAs. For example, researchers have proposed different end-
to-end frameworks to virtualize FPGA resources in the cloud
environment [16], [19], [21], [22], [34], [39]. Besides, Xilinx
has integrated Stacked Silicon Interconnect [37] and Dynamic
Function eXchange [36] into advanced FPGAs to facilitate
multi-tenant FPGAs.

While this new sharing model has attracted considerable
attention from both academia and industry, it introduces new
security risks, notably power side-channel leakages [14], [40],
[43]. Specifically, different users’ circuits on a multi-tenant
FPGA share the same power delivery network (PDN) [7].
Consequently, transient voltage fluctuations in the shared
PDN, induced by computing activities of a victim circuit,
can be sensed by a co-located attack circuit. Leveraging
this capability to sense voltage fluctuations, various remote
power side channel attacks have been proposed to extract
cryptographic keys [15], [33], [43], build covert channels [43],
fingerprint computation workloads [14], and steal DNN model
architectures [42] or inputs [25].
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To sense voltage fluctuations, prior studies have proposed
various malicious circuit designs that exploit combinations
of traditional FPGA logic resources, i.e., Look-up Tables
(LUTs) [15], [32], [33], [43], carry chains (CARRY) [11],
routing resources [29], and flip-flops (FFs). For instance, time-
to-digital converters (TDCs) [11] chain CARRY resources as a
long delay line and connect each CARRY output precisely to
an FF within the same slice. Besides, the ring oscillator (RO)
circuits configure LUTs to implement combinational loop that
generates oscillating signals, which are then captured by FFs.

In response, several countermeasures have been proposed
to prevent the deployment of such circuits on multi-tenant
FPGAs [11], [28], [31]. First, as TDC circuits require a long
delay chain placed in continuous vertical areas, they can be
mitigated by restricting access to such areas [11]. Second, as
RO circuits inherently contain combinational loops and some
TDC circuits [13] include latch structures, bitstream checks
targeting these key structures have been introduced [28], [31].
Although there are new sensor designs [15], [29], [32], [33]
that bypass these placement constraints and bitstream checks,
all these designs are crafted by configuring traditional FPGA
logic resources that are in the primary focus of bitstream
checks [18]. Outside the scope of traditional FPGA resources,
the DSP blocks dedicated to complex mathematical operations
remain unexplored. To this end, we are interested in the
following research questions:

Can voltage fluctuations be sensed through maliciously
configuring DSP blocks? If so, what attacks can be
launched, and what information might be leaked?

In this paper, we propose LeakyDSP, a new on-chip sensor
that is built by configuring DSP blocks to sense fine-grained
voltage fluctuations without requiring any traditional FPGA
logic resources. In a multi-tenant FPGA environment, DSP
blocks are partitioned into separate virtual areas, allowing
each tenant exclusive access to their DSP blocks [22]. Our
key observation is that each dedicated DSP block has three
main sub-components, i.e., a pre-adder, a multiplier, and an
arithmetic logic unit (ALU). The signal delay incurred by
either sub-components is sensitive to voltage, resulting in
different signal propagation delay between output and input



of a DSP block when different voltage fluctuations occur.
To this end, we craft LeakyDSP as follows. First, we

amplify the effect of voltage variations on the output of
DSP blocks by maximizing the signal propagation delay.
This is achieved by creating a chain within a single DSP
block that links the aforementioned sub-components without
intermediate registers. Then, multiple configured DSP blocks
are connected in series to accumulate their signal delays.
To capture and store the resulting flipped bits, the output
register of the final DSP block is instantiated. Last, we employ
the IDELAY primitive to dynamically adjust the initial delay
of DSP blocks after this sensor is deployed onto an FPGA
board. This post-deployment calibration enhances LeakyDSP’s
robustness to different FPGA placements.

To demonstrate the viability of LeakyDSP, we first char-
acterize the sensitivity of LeakyDSP in two experiments. In
each experiment, the TDC [11] (i.e., the most studied circuits
to sense voltage fluctuations) is re-implemented as a baseline
and compared against LeakyDSP regarding their sensitivity.
Specifically, we put LeakyDSP (resp., TDC) under a given
placement and measure its sensitivity to voltage fluctuations
caused by different victim activities. Further, considering that
PDN influences its circuits unfairly, we evaluate the impact
of spatial proximity to a given victim circuit on LeakyDSP
(resp., TDC) by placing it onto different FPGA locations.
Both experimental results show that LeakyDSP achieves fine-
grained sensitivity to voltage fluctuations and strong robust-
ness to different placements.

We then demonstrate the security implications of LeakyDSP
by mounting two end-to-end case studies. First, we perform a
correlation power analysis (CPA) against an AES-128 module
running on FPGA, with 25 k-78 k traces for extracting the
full AES key under 8 different placements of LeakyDSP
and 4 operating frequencies of the AES circuit. Second, we
use LeakyDSP to establish a covert channel with a high
transmission rate of 247.94 b/s and low error rate of 0.24%.
Summary of contributions: The main contributions of this
paper are as follows:
• We propose LeakyDSP, a new on-chip sensor design on
multi-tenant FPGAs. To the best of our knowledge, we are the
first to identify the information leakage through DSP blocks.
• We perform a comprehensive evaluation of LeakyDSP’s ca-
pabilities. Experimental results show that LeakyDSP achieves
high sensitivity to voltage fluctuations and strong robustness
to different placements.
• We demonstrate the security implications of LeakyDSP, in-
cluding extracting full AES keys and building covert channels.

The source code to reproduce the experiments is released
at https://github.com/jjzou2002/LeakyDSP.

II. BACKGROUND AND RELATED WORK

A. Power Side Channels on Multi-tenant FPGAs

FPGAs offer significant advantages for customized com-
putation due to their inherent re-programmability and high-
performance capabilities [26]. In recent years, the emergence

of multi-tenant cloud FPGA environments, attracting promi-
nent interest from both industry and academia [7], promotes
flexible and cost-effective access to advanced FPGA function-
alities. Specifically, a single FPGA instance is shared among
numerous cloud tenants simultaneously, maximizing resource
usage efficiency and potentially escalating performance. How-
ever, the sharing of an FPGA by multi-tenants, unfortunately,
opens the door for various types of side channel leakages,
particularly power side channels [14], [15], [29], [32], [33],
[43]. Various security implications have been demonstrated
via power side channels, including extracting cryptographic
keys [15], [33], [43], building covert channels [9], [10], [43],
fingerprinting victim computations [14], and stealing DNN
model architectures [42] or inputs [25].

One key challenge in these attacks is to craft an on-chip
sensor whose output is affected by its own supply voltage and
to co-locate it with the victim circuit. In a multi-tenant FPGA
scenario, this sensor can sense the voltage fluctuations caused
by a victim circuit sharing the same PDN. All existing on-chip
sensors exploit the malicious connection of traditional FPGA
resources (e.g., LUTs, carry chains, wires, and FFs). As the
most studied one, TDC-based circuits [11], [14] use the FPGA
carry chain as a delay unit to construct a delay line, with each
output connected to an FF that samples the signal traversing
through the delay line. Besides, RO [42], [43], VITI [33],
PPWM [32], and 1LUTSensor [15] initialize LUT and FF in
their own ways. Last, RDS [29] freely places several FFs to
abuse the delay incurred by routing resources, e.g., wires.

B. Digital Signal Processing Blocks

As FPGAs have transitioned from prototyping systems
to deployable systems (e.g., BrainWave [23] and Catapult
[24]), manufacturers have integrated digital signal processing
(DSP) blocks into FPGA boards. Unlike traditional FPGA
logic resources, which consume substantial area and power
for complex mathematical calculations, DSP blocks offer a
specialized hardware solution that significantly enhances both
performance and efficiency, though at the cost of a degree
of re-programmability. Accessed through dedicated hardware
primitives, these DSP blocks can be configured for a wide
range of arithmetic and logic operations [27].

For instance, starting with the Virtex-6 and 7-series archi-
tectures, the DSP48E1 primitives are dedicated to the efficient
processing of high-bitwidth data, enabling complex functions
such as multipliers and filters to be implemented without

Fig. 1: Structure of the Xilinx DSP48E1 primitive [27].



relying on traditional FPGA resources. Figure 1 shows a
simplified representation of the DSP48E1 primitive. It has
four inputs with different lengths and is composed of three
main sub-components, i.e., a pre-adder, a multiplier, and
an arithmetic logic unit (ALU). The pre-adder is a 25-bit
addition/subtraction unit that operates on input D and the
lower 25 bits of input A. The multiplier multiplies the lower
25 bits of input A or the result of pre-adder with the 18-
bit input B. The ALU performs addition, subtraction, and
logical operations using the output from the multiplier, input
C, concatenated inputs A and B, or the previous output of the
DSP block. These sub-components can be flexibly configured
to allow the DSP block to perform a range of functions.

III. LEAKYDSP

A. Threat Model

We focus on a multi-tenant FPGA scenario where different
tenants’ circuits are co-located on the same FPGA. Aligned
with previous FPGA power side channels [11], [14], [15],
[29], [32], [33], our only assumption is that the FPGA tenant
applications effectively utilize the shared PDN to optimize
resource allocation and bolster overall operational efficiency.
To ensure robust logical isolation, each tenant is allocated
physically separate FPGA regions to deploy their circuits. The
cloud service providers empower tenants with the flexibility
to implement a diverse array of FPGA circuits, except those
containing combinational loops [28]. Additionally, tenants can
define precise placement and routing constraints tailored to the
unique requirements of their own designs.

B. LeakyDSP Design

The main idea behind LeakyDSP to sense on-chip volt-
age fluctuations is to design a malicious DSP function that
inherently responds to variations in the supply voltage. Our
key observation is that the dedicated DSP blocks in FPGAs
are composed of three main sub-components: a pre-adder, a
multiplier, and an ALU (discussed in Section II-B). The signal
propagation delay through these components is sensitive to
voltage changes, leading to signal delay variations between
their input and output under different voltage levels.

We note that despite the limitations in configurability com-
pared to traditional FPGA logic resources, DSP blocks still
offer sufficient flexibility to construct a voltage-sensitive func-
tion. Specifically, each of the inputs for these sub-components
can be responded asynchronously without intermediate regis-
ters (i.e., flip-flops). If we connect the three components in
series, their delay will be accumulated and their computation
results will also have dependencies. Further, the DSP archi-
tecture supports the cascading of multiple DSP blocks. This
capability allows LeakyDSP to be composed of an arbitrary
number of DSP blocks, much like how a single TDC instance
can utilize an arbitrary number of CARRY structures.

Figure 2 shows the overview of the proposed LeakyDSP
sensor. Specifically, LeakyDSP contains two parts. First, we
carefully configure the DSP blocks to make the signal propa-
gate through the sub-components that are marked as green.
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Fig. 2: An overview of LeakyDSP.

The input of the first block (A) consists of multiple bits,
and each of the bits equals the delayed CLKIN . Second, we
leverage IDELAY primitive to introduce a calibration design
and dynamically adjust the phase difference between input
signal A and the clock signal of the flip-flop within the last
DSP block CLK. By doing so, LeakyDSP’s output is sensitive
to voltage fluctuations and adaptive to different placements.
Malicious DSP function: In this paper, we pick the simplest
function that can be instantiated by DSP blocks to analyse
the information leakage of LeakyDSP, i.e., P = A, where A
is varying between ‘00...0’ and ‘11...1’. To achieve this, we
first configure the pre-adder to add a constant ‘0’ to the input
(A), and pass the result (A + 0) to the multiplier for further
computation. Second, we set the other input of the multiplier
to ‘1’, ensuring the multiplication result (A + 0) × 1 remains
consistent with the original input A. Third, we configure the
ALU as an adder and set the second input as a constant ‘0’,
producing a result of (A + 0) × 1 + 0. Last, we configure the
output mode based on the position of the DSP block. If it
is the last DSP block in a LeakyDSP instance, the output of
ALU passes through a register before being stored in memory.
Otherwise, the lower bits of output are fed directly into the
next DSP block as its input.
Extracting the intensity of the voltage fluctuations: When
the PDN is idle, LeakyDSP’s outputs remain stable with only
a few bit flips. However, in the case of a busy PDN, the
number of flipped bits increases in response to fluctuating
voltage. Taking DSP48E1 as an example, its output is 48-bit
wide, enabling a fine-grained quantization to voltage levels.
To this end, LeakyDSP converts each raw sampled value into
a numerical representation based on its Hamming weight [11],
[29], referred to as the readout.
Calibration: Aligned with existing crafted circuits [11], [15],
[29], [32], [33], LeakyDSP contains a calibration part to ensure
that the bit-flip number from LeakyDSP’s outputs changes
accordingly when the voltage in PDN starts fluctuating. To dy-
namically adjust the initial delay, LeakyDSP incorporates two
IDELAY components, which are part of the SelectIO resources
and designed for signal timing adjustment in FPGA devices.
Each IDELAY can generate a runtime-adjustable delay of up to
the half of the period of its connected clock signal (i.e., T/2)
on the signal passing through it. By connecting them to the
input signal A and clock signal CLK respectively, LeakyDSP
can achieve a phase difference ranging from −T/2 to T/2

between A and CLK. We adopt a straightforward calibration
procedure for LeakyDSP. Specifically, we iteratively increase



the initial clock delay by changing the configuration of the
two IDELAY units, until the readouts of LeakyDSP reach the
maximum variation between two consecutive adjustments.
Implementation: Though LeakyDSP can be instantiated
with an arbitrary number of used DSP blocks (i.e., n), the
optimal choice of n is influenced by the resource budget and
sensitivity to voltage fluctuations. In this paper, we select
n = 3, an empirical value that provides a balance of high
sensitivity, acceptable resource usage, and ease of calibration.
Besides, we use the DSP48E1 primitive to map the configu-
ration of DSP blocks on 7-series FPGA boards and DSP48E2

on Zynq Ultrascale+ FPGAs. For delay configurations, we
employ IDELAYE2 on 7-series FPGAs and IDELAYE3 on Zynq
UltraScale+ FPGAs.

IV. EVALUATION

In this section, we characterize LeakyDSP and demonstrate
how LeakyDSP can be used to mount end-to-end attacks.
Machine settings: To perform the characterization and AES
key extraction attack, we use a Basys3 board connected
to a Huawei MateBook 14 laptop via UART and powered
through the USB interface. To evaluate the covert channel,
we use an ALINX AXU3EGB board, which has the similar
architecture as the AWS EC2 instance (i.e., Xilinx Ultra-
Scale+ VU9P FPGA) [3]. To deploy hardware code onto the
FPGA platforms, we use Vivado version 2020.1 for synthesis,
implementation, and bitstream generation. Unless otherwise
stated, all experiments are conducted using the default Vivado
synthesis and implementation settings.

A. Characterizing LeakyDSP

To show the sensitivity of LeakyDSP to voltage fluctuations,
we opt for power virus circuits as a victim to generate varying
voltage fluctuations, aligned with [43]. The power virus circuit
consists of a number of instances that are implemented as RO
circuits. Specifically, within the power virus circuits, each RO
circuit consists of a single inverter, an AND gate, and an FF.
The output of the inverter is controlled by configuring the
enable signal, determining whether it is active to make the
output signal frequently switch between ‘0’ and ‘1’. These
switching activities can cause a voltage fluctuation in PDN.
LeakyDSP’s sensitivity under different victim activities:
Our first experiment is to characterize the readout change
of LeakyDSP to various victim activities. Specifically, we
create 8,000 instances of power virus to cover over 33.3%
routing places of our Basys3 board and activate about 46%
of available LUT resources. We then divide them into 8
groups and each group has 1000 evenly-distributed instances.
When we activate a varying number of these groups, the
voltage varies from 9 levels. For each level, we collect 2,000
readouts from LeakyDSP and take the average of them as
the final result to compute Pearson correlation coefficient and
regression coefficients. Pearson correlation coefficient is used
to assess the strength and direction of the linear association,
while the regression coefficient measures the impact of these
two values in a linear regression model.

Fig. 3: The sensitivity of LeakyDSP and TDC in the same
placement under different victim activities. Note that we
implement TDC with 128 FFs, resulting in a 128-bit output,
while LeakyDSP produces a 48-bit output.

(a) (b)

Fig. 4: The sensitivity of LeakyDSP and TDC [11] under
different placements. The index as the x-axis in Figure 4(b)
corresponds to the region index in Figure 4(a). The dashed
line indicates the average value of a sensor.

Figure 3 shows the relationship between these readouts (i.e.,
the number of unflipped bits in LeakyDSP’s output) and the
number of activated power virus instances. These two values
of LeakyDSP exhibit a roughly linear relationship with a
Pearson correlation coefficient of -0.974, while TDC achieves
-0.996. The close proximity of these correlation coefficients
to -1 indicates a strong linear relationship, demonstrating that
all the evaluated voltage levels fall within the observable
range of LeakyDSP and can be accurately estimated using
its readout. Furthermore, compared with the most studied on-
chip sensor (i.e., TDC), LeakyDSP achieves a high regression
coefficient of -3.45, while TDC achieves -1.09. This indicates
that LeakyDSP provides finer granularity under the given
sensor placement.
LeakyDSP’s sensitivity under different placements: In a
multi-tenant FPGA, spatial proximity between a crafted circuit
and a victim’s circuit is beyond the attacker’s control. As such,
we characterize the readout change of LeakyDSP with respect
to their spatial proximity to victim logic that consumes power.
Specifically, we instantiate 8,000 instances of the power virus,
and constrain the placement of the power virus to region 1
and region 2 in Figure 4(a). Subsequently, we put LeakyDSP
(resp., TDC) in each of the 6 FPGA regions via a Pblock

constraint with all the 8,000 power virus instances off and on.



We sample 2,000 readouts under each setting and calculate
their average.

As shown in Figure 4, although the effectiveness of
LeakyDSP is influenced by the unevenness of the FPGA’s
power supply design, it can still sense the given voltage fluctu-
ation under all the above placements. Specifically, LeakyDSP
achieves the best performance when it is placed in region
2. Further, when LeakyDSP is placed under the worst-case
placements (i.e., region 5 and region 6 which are far away from
the victim circuit), its readouts are still sensitive to voltage
fluctuations.

B. Stealing Cryptographic Keys

As the most widely adopted symmetric-key cryptographic
algorithm, AES has been implemented in different devices,
including hardware circuits on FPGA platforms [1], [20],
[38]. However, prior work has demonstrated that a remote
attacker can extract the full secret key of AES circuits via CPA
attacks [8]. These attacks leverage the Pearson Correlation
Coefficient [6] to detect linear dependencies between voltage
fluctuations during AES circuit execution and hypothetical
power calculated from the ciphertext with a guessed key.
To achieve this, attackers first use the Hamming weight
and Hamming distance power models to estimate the power
consumption for each possible key value. Then, they use their
own side channel to obtain the power-related information.
Last, they sort each guessed value according to its correlation
coefficient to determine the ground-truth key value.
Experimental setup: Our end-to-end attack is built upon the
open-source code of RDS [29], which implements an AES-128
module [1] that co-resides with the attack circuit on the Basys3
board. By default, the clock frequencies of the attack circuit
and the AES are set to 300 MHz and 20 MHz, respectively.
Please note that 20 MHz is exactly aligned with the victim
setting in VITI [33] and RDS [29], and we just aim to show
the general possibility of leakage. Unless otherwise stated,
we collect 60 k power side-channel traces for each setting. In
each trace collection, we transmit the key K and the plaintext
PT to the AES core, and record the LeakyDSP’s readouts
obtained during AES encryption. To avoid plaintext repetition,
we employ the current ciphertext as the subsequent plaintext.
To simplify the process, we utilize the start encryption signal
to trigger the collection of a sensor trace. To evaluate the
performance of LeakyDSP, we run the key extraction attack
under 8 placements and 4 different AES clock frequencies.

Aligned with previous AES key recovery attacks [15], [29],
[32], [33], we use the key rank (KR) estimation metric, which
evaluates the number of key candidates that an attacker needs
to test. Specifically, the key rank is presented as a narrow
range with an upper and lower bound, due to the bounded
error in current key rank estimation algorithms. For instance,
in the absence of any side-channel information, the upper key
rank corresponds to the entire key space, which is 2128 for
AES-128. Conversely, when the full key is compromised, the
lower bound of the KR reduces to one, while the upper bound
tightly constrains the range, indicating that the correct key can

TABLE I: Number of traces required to break the full AES
128-bit key for different sensor placements.

Setting Traces to Extract Full Key (×1000)

P1 P2 P3 P4 P5 P6 P7 P8 Average Baseline

LeakyDSP 55 43 58 28 48 25 37 41 41 51

(a) (b)

Fig. 5: Key rank estimation for LeakyDSP. The curves in
Figure 5(b) are named after the number on each placement
shown in Figure 5(a).

be deduced with minimal guessing. In such scenarios, attackers
can arrange each guessed byte value based on correlation
coefficient to obtain the genuine AES key. To speed up
computation, we employed the open-source analysis tool [8]
for conducting our CPA analysis on an NVIDIA GeForce RTX
3090 GPU.
Experimental result: Figure 5 shows the average upper and
lower bounds of the key rank estimation metric to evaluate the
impact of the placement of LeakyDSP. Figure 5(a) is a color
gradient that rates all 8 placements based on their key rank
with 20 k power traces, revealing that the performance of a
power analysis attack relies on the placement of LeakyDSP.
This observation aligns with the findings reported in [29], [33],
where the location-dependent sensitivity is attributed to the
non-uniformity of the PDN across the FPGA board. Moreover,
Figure 5(b) shows the key rank variability of LeakyDSP across
5 selected placements out of the total 8 placements, including
the best and worst-case placements, as well as the placement
closest to the victim circuit. Each placement is identified
by its corresponding number, as indicated adjacent to them
in Figure 5(a). The full results are summarized in Table I.
Compared to TDC, which requires 51 k traces to extract the
full key, LeakyDSP achieves a comparable efficiency with
25 k-58 k traces needed. We do not claim that our LeakyDSP is
better than TDC in terms of the attack performance, as we only
evaluate TDC in one setting. As our LeakyDSP does not use
any traditional logic resources inside configurable logic blocks,
we cannot place LeakyDSP and TDC in the same position for
a solid comparison [29], [33].

We then evaluate the impact of the AES frequency on our
attack, utilizing the best-case placement for attackers (i.e.,
P6). Figure 6 illustrates the corresponding key rank outcomes.



Fig. 6: The impact of the AES frequency on our attack. The
efficiency of key extraction decreases as the frequency of the
victim circuit increases.

We note that the performance of the attack is dependent on
the frequency. The efficiency of our key extraction decreases
as the frequency of the victim circuit increases. At a high
frequency of 100 MHz, the 128-bit AES key cannot be fully
recovered even with all 60 k traces. To address this, we collect
an additional 20 k traces, achieving full key recovery with a
total of 78 k traces.

C. Establishing Covert Channels

Aligned with existing work [10], [13], we apply the covert
channel for assessing the bandwidth of our side channels,
where the attacker has complete control over both the sender
and receiver. We assume the colluding sender and receiver
operate on the same FPGA. To induce the voltage fluctuations
for the sender, we opt for power virus circuits as to generate
varying voltage fluctuations. To transmit a ‘1’, the sender
sets its enable signals to ‘0’, making all the power virus
instances idle. To transmit a ‘0’, a sender activates all the
controlled power virus instances to plunder the voltage of
receiver circuits. The receiver is a LeakyDSP-based circuit and
loops to monitor voltage level via its readouts. By comparing
the averaged readouts to a predefined threshold, the receiver
distinguishes between the transmitted bits, ‘0’ or ‘1’.
Experimental setup: To assess the performance of our covert
channel, we vary the time for sending one bit from 2 ms to
7.5 ms and send 10 kb of random data in each configuration.
Besides, we employ two metrics that are widely used in
previous covert channels [41]: transmission rate (TR) and bit
error rate (BER). TR measures the amount of data transmitted
per unit time, while BER represents the proportion of received
bits incorrectly interpreted relative to the sent bits.
Experimental result: Figure 7 shows the end-to-end results
across 10 runs. The experimental results show a negative
correlation between the BER and the time for sending a
bit. When the sending time is greater than 3.5 ms, the BER
stabilizes below 1%. When the sending time is less than
3 ms, the BER gradually increases with the decreasing of
sending time due to the limited accuracy of the receiver in
distinguishing data. The smaller the time for sending a bit,
the greater the TR. So we recommend the sending time of
4 ms with a BER of 0.24%. With such setting, the TR of a
single transmission is 247.94 b/s.

Fig. 7: The performance impact of timing parameters on
LeakyDSP-based covert channel.

V. DISCUSSION

Mitigation: Similar to existing on-chip sensors, LeakyDSP
relies on precise voltage information from a shared PDN.
While enhancing the PDN could mitigate such attacks, this
approach is limited by current production technologies [30],
[35] and does not protect already-deployed products. An
alternative countermeasure is to inject noise into the PDN [12],
[17], which obscures power patterns but introduces perfor-
mance overhead. Besides, the developers can modify their
circuits as constant-power implementation with some efforts.
Last, after identifying the threats from DSP blocks, cloud
providers can prevent the deployment of LeakyDSP by enforc-
ing synchronized inputs or mandatory timing checks on DSP
configurations. However, we note that both approaches limit
benign tenants’ flexibility in DSP reconfiguration. Besides,
timing violation checks can be bypassed using programmable
clock-generating circuits, a method applicable to TDC [11]
and RDS [29] that face the same timing violation issues.
Future work: This paper demonstrates that DSP blocks
can indeed be exploited for power analysis attacks through a
comprehensive evaluation on two FPGA boards with different
architectures. However, while LeakyDSP’s readouts vary with
voltage levels monotonously, this change is not absolutely
uniform. Due to the black-box nature of DSP blocks’ internal
design, we cannot entirely explain LeakyDSP’s leakage behav-
ior at this stage. Besides, the number of DSPs within a single
LeakyDSP sensor is an empirical value (n = 3). We leave
the exploration of DSP operating principles and the optimal
selection of n as future work.
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that maliciously configures DSP blocks to sense voltage fluc-
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robust across different placements. The viability of LeakyDSP
is demonstrated by two case studies, which extract full AES
keys under various placements of LeakyDSP and operating fre-
quencies of victim circuits, and build FPGA-to-FPGA covert
channels with a high transmission rate of 247.94 b/s.
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