
1

MUXLeak: Exploiting Multiplexers as A Power Side
Channel against Multi-tenant FPGAs

Xin Zhang, Jiajun Zou, Zhi Zhang, Qingni Shen, Yansong Gao, Jinhua Cui,
Yusi Feng, Zhonghai Wu, Derek Abbott, Fellow, IEEE

Abstract— FPGA cloud acceleration, or “FPGA as a Service”
(FaaS), offered by AWS, Microsoft Azure, Alibaba Cloud, and
Huawei Cloud, has become a promising solution for tackling
complex, compute-intensive workloads. It targets applications
such as genomics, image and video processing, electronic design
automation, compression, and big data analytics. While multi-
tenant FPGAs significantly enhances resource utilization effi-
ciency, it faces security threats from power side channels, where
attackers craft a malicious circuit to detect voltage fluctuations
from victim circuits. Observing that all the crafted circuits exploit
either Carry Chain or Look-up Table to sense voltage fluctuations,
existing defenses have focused on detecting the malicious use of
the two basic FPGA computing resources. However, it remains
unclear whether such countermeasures are sufficient to address
the growing threat of power side channels in multi-tenant FPGAs.

In this paper, we reveal MUXLeak, a novel on-chip sensor
that exploits Multiplexer (MUX) to craft a stealthy power side
channel, which bypasses existing countermeasures. Particularly,
we perform a thorough analysis of basic resources within an
FPGA unit and unveil that MUX, another basic resource, has
never been exploited before. More importantly, it can be directly
initialized on Xilinx FPGAs and its incurred signal propagation
delay demonstrates an inverse correlation with changes in voltage,
making itself exploitable for a new power side channel leakage. In
our evaluation, we test MUXLeak on three Xilinx FPGA products
and use TDC [18] (i.e., the most sensitive on-chip sensor until
now) to benchmark the sensitivity of MUXLeak. Our results show
that MUXLeak has achieved the same level of sensitivity as TDC
to voltage fluctuations. Further, we apply MUXLeak to mount two
attacks, i.e., extracting AES keys within 2.54 hours and stealing
DNN model architectures with an accuracy of over 90%.

Keywords—Multi-tenant FPGA, Cloud Computing, Side Chan-
nel, Remote Power Analysis

Corresponding authors: Zhi Zhang and Qingni Shen.
Xin Zhang, Jiajun Zou, Qingni Shen, and Zhonghai Wu are with the School

of Software and Microelectronics, Peking University, Beijing 100871, China,
also with the National Engineering Research Center for Software Engineering,
Peking University, Beijing 100871, China, and also with the PKU-OCTA
Laboratory for Blockchain and Privacy Computing, Peking University, Beijing
100871, China. E-mail: qingnishen@ss.pku.edu.cn.

Zhi Zhang and Yansong Gao are with the Department of Computer Science
and Software Engineering, The University of Western Australia, Perth, WA
6009, Australia. E-mail: zzhangphd@gmail.com.

Jinhua Cui is with the College of Semiconductors (College of Integrated
Circuits), Hunan University, Changsha 410082, China.

Yusi Feng is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, 518055, China.

Derek Abbott is with the School of Electrical and Electronic Engineering,
The University of Adelaide, Adelaide, SA 5005, Australia.

I. INTRODUCTION

In recent years, major commercial cloud service providers
such as Amazon AWS, Alibaba, Huawei, and Microsoft
Azure have provided remote access to high-performance Field-
Programmable Gate Arrays (FPGAs), known as FPGA-as-a-
service (FaaS) [9]. Different from CPUs and GPUs which
optimize instruction streams for acceleration, FPGAs allow
users to directly reconfigure the underlying gate-level hard-
ware resources, thereby achieving notable improvements in
performance and energy efficiency [39], [35], [53]. For ex-
ample, FlightVGM [32], a state-of-the-art FPGA accelerator
for video generation model (VGM) inference, demonstrates
these advantages. When deployed on the AMD V80 FPGA, it
achieves 1.30× higher performance and 4.49× greater energy
efficiency on sparse VGM workloads compared to that of the
NVIDIA RTX 3090 GPU.

To further optimize FPGA utilization efficiency, both
academia and industry have focused their efforts on enabling
the co-residence of FPGA circuits by independent tenants,
referred to as multi-tenant FPGAs [10]. Particularly, multiple
end-to-end frameworks have been proposed to virtualize FPGA
resources on the cloud, including Coyote [27], OPTIMUS [34],
SYNERGY [31], and XUNI [49]. Besides, industrial advance-
ments from Xilinx such as Stacked Silicon Interconnect (SSI)
and Dynamic Function eXchange (DFX) have been integrated
into high-end FPGAs such as Xilinx Alveo U280 to facilitate
multi-tenant FPGAs.

Given that FPGA multi-tenancy has attracted considerable
attention from both academia and industry, this threat model
faces new security concerns raised by recent works [58], [38],
[10], [33], among which, side channel attacks are the main-
stream concern. Particularly, in a multi-tenant FPGA platform,
an attacker can co-reside with a targeted victim and share the
same power delivery network (PDN) [9]. As current PDNs are
unable to eliminate variations in current when supplying power
to a circuit [59], this results in varying transient voltage drops,
causing delays in signal propagation.

To this end, the attacker can craft a circuit1 to sense
the delay variations caused by voltage fluctuations from the
victim circuit, posing various power side-channel threats [58],
[40], [51], [57], [37], [15], such as extracting cryptographic
keys [58], [40], [15], and recovering DNN model architec-
tures/inputs [51], [57], [37]. All these attacks are realistic
in that they eliminate the need for knowing the targeted
victim’s circuit design and location in FPGA, aligned with

1We use “crafted circuit” and “on-chip sensor” interchangeably.

the aforementioned threat model where tenants do not know
each other in a multi-tenant FPGA platform. Since each of
these attacks exploit a basic FPGA computing resource, they
can be categorized as Carry Chain (CARRY) and Look-up
Table (LUT)-based crafted circuits. CARRY facilitates fast
carry propagation and LUT enables the implementation of
diverse logic functions. The signal delay incurred by either
structure is sensitive to voltage.

To mitigate the aforementioned attacks, a number of de-
fenses have been proposed [36], [44], [3], [30], [29] in
detecting malicious use of the CARRY or LUT structures.
First, the CARRY-based crafted circuits [60], [40], [37], [51]
require a uniquely long chain of basic CARRY structures,
making them easily identifiable by Design Rule Check [44],
[15]. Further, these circuits incur a significant area overhead
and are limited in vertical placement, posing challenges for
their deployment on multi-tenant FPGAs [36]. Second, the
LUT-based crafted circuits [58], [57], [13] (so-called RO
circuits) present a distinctive characteristic of combinational
loop, rendering themselves detectable [3], [30], [29], [41].
For example, Amazon AWS has banned these RO circuits
by leveraging this characteristic [41]. To this end, we ask the
following research questions:

Is there any other common FPGA resource that can be
exploited to craft a new and stealthy side channel?

In this paper, we provide positive answers by presenting
MUXLeak, a new on-chip sensor that exploits Multiplexers
(MUXes) to craft a stealthy power side channel on multi-tenant
FPGAs, bypassing all existing countermeasures. It can be used
to collect fine-grained voltage information from a targeted
victim, without details about the victim’s circuit design or
location in the FPGA board.

We observe that both the CARRY and LUT structures from
existing on-chip sensors are basic FPGA computing resources,
each of which consists of CMOS transistors. What they have
in common is that both are components of a Configurable
Logic Block (CLB), an FPGA unit for allocating resources to a
circuit. With this observation, we have performed a thorough
analysis of all components within a CLB of Xilinx FPGAs.
Particularly, a CLB has 4 components including LUT, CARRY,
Flip-Flop (FF) and Multiplexer (MUX). While FF contains
complementary MOSFETs [24], [25] and is used by existing
crafted circuits to store information, MUX is composed of
CMOS transistors and has never been explored before at
the CLB level. Further, its incurred signal propagation delay
demonstrates an inverse correlation with changes in voltage,
rendering itself potentially exploitable for a new side channel.

To this end, we design a new on-chip sensor, called
MUXLeak, which consists of MUXes without using any
CARRY and LUT structures that are in the spotlight of existing
defenses. When the voltage fluctuates, the signal propagation
delay from MUXes changes accordingly, resulting in different
numbers of bit flips in the output stream of MUXLeak.
Specifically, MUXLeak has groups of chained MUXes with
each group connecting its MUXes via a different routing path.
By doing so, MUXLeak generates a fine-grained scale of

delay, rendering itself sensitive to changes in voltage. As the
change in delay decides the bit-flip number in the output,
MUXLeak uses the bit-flip number to sense fluctuations in
voltage. To ensure and optimize MUXLeak’s sensitivity across
its different placements on various FPGA boards, we further
propose a calibration design that carefully calibrates the initial
delay of MUXes without a victim circuit involved. Our design
leverages MUXes to enable a dynamic configuration of rout-
ing paths. This indicates that the calibration can be decided
after MUXLeak is deployed onto an FPGA board, making
MUXLeak sensitive in different placements.

To demonstrate the viability of MUXLeak, we evaluate
it on three Xilinx FPGA boards (i.e., PYNQ-Z2, ALINX
AXU3EGB, and Basys 3)2. We first characterize the sensi-
tivity of MUXLeak in two experiments. In each experiment,
TDC [18] (i.e., the most sensitive on-chip sensor until now)
is re-implemented as a benchmark and compared against
MUXLeak regarding their sensitivity. Specifically, we put
MUXLeak (resp., TDC) under a given placement and measure
its sensitivity to voltage fluctuations caused by different victim
activities (i.e., different numbers of activated power virus
instances ranging from 0 to 16,000). Further, considering that
PDN influences its circuits unfairly, we evaluate the impact of
spatial proximity to a given victim circuit (i.e., 8000 activated
power virus instances) on MUXLeak (resp., TDC) by placing it
onto different FPGA locations. Both experimental results show
that MUXLeak has achieved the same level of sensitivity as
TDC [18] to voltage fluctuations.

We then demonstrate the security implications of MUXLeak
by mounting different attacks. First, we demonstrate a correla-
tion power analysis (CPA) against an AES-128 module, within
2.54 hours for extracting the full AES key under 8 different
placements of MUXLeak and 4 operating frequencies of the
AES circuit. Second, we apply MUXLeak to steal DNN model
architectures with an accuracy of over 90%.
Contribution: The main contributions of this paper are
summarized as follows:
• After a thorough analysis of basic FPGA resources, we

have found a widely used but never exploited structure (i.e.,
MUX), that can be used to craft a new and stealthy on-chip
sensor, coined as MUXLeak.

• We perform a comprehensive evaluation of MUXLeak’s
capabilities. Experimental results show that MUXLeak
achieves the same level of sensitivity as the most sensitive
on-chip sensor (i.e., TDC [18]) to voltage fluctuations.

• We demonstrate the security implications of MUXLeak
using 2 case studies, including extracting full AES keys
and stealing DNN model architectures.
The source code to reproduce our experiments is released

at https://github.com/zhangxin00/MUXLeak-artifact/.

II. BACKGROUND AND RELATED WORK

A. Basic FPGA Resources
In Xilinx FPGAs, the configurable logic block (CLB) is a

basic unit used to allocate resources to a circuit [42]. The

2Xilinx is the largest FPGA supplier with about 45% of the market share [1]

2

https://github.com/zhangxin00/MUXLeak-artifact/

CLB is connected to a switch matrix for access to the general
routing, providing a configurable and programmable fabric
within FPGA. Once the logic circuit design is finalized using
hardware description languages, Electronic Design Automation
(EDA) tools (e.g., Vivado and Quartus) assign CLBs within the
FPGA. These assignments directly correspond to the circuit
designs, meticulously transforming the digital blueprint into
implemented logic circuits.

Fig. 1: Each slice in the Xilinx 7 series architecture encom-
passes four types of basic resources: 4 LUTs, 1 CARRY, 8
FFs, and 3 MUXes. Two slices are combined to form a CLB.

To allocate resources more selectively and efficiently, a CLB
is implemented as one or two slices [24], [25], depending
on a specific architecture. In the Xilinx 7 series FPGA [24],
a CLB consists of two slices. As shown in Figure 1, each
slice contains 4 Look-up Tables (LUTs) and 8 FFs, along
with a dedicated Carry Chain (CARRY) and 3 MUXes. In
the UltraScale series FPGAs [25], CLBs have combined the
two slices into one, which contains all 8 LUTs and 16 FFs,
along with 1 CARRY and 7 MUXes.

Despite the fact that these four components internally consist
of more intricate AND gates, OR gates, and multiplexers,
they represent the basic resources that users can directly
access. When deploying a hardware design on an FPGA board,
developers are required to map their logical design to these
four basic resources via EDA tools to generate a bitstream
file. Additionally, only these four types of basic resources
can be instantiated directly by invoking the relevant hardware
primitives.

First, LUTs are used to implement various function genera-
tors, effectively replacing the role of logic gates in traditional
circuit design. By initializing the LUT through exhaustively
listing the output values of various input situations, the corre-
sponding top-level functions can be realized. Second, MUXes
play a crucial role in controlling the signal routing within
CLBs, e.g., expanding the number of inputs in a circuit
via changing signal propagation paths. Third, CARRYs are
designed to improve the performance of arithmetic functions
such as adders, counters, and comparators. FPGA designs that
include simple counters or adders /subtractors automatically in-
voke this CARRY resource for enhanced speed and efficiency.
Last, FFs serve as storage elements within the FPGA archi-

tecture. By employing complementary MOSFETs to establish
positive feedback loops, FFs maintain their output state until a
specific triggering condition is met. This characteristic endows
FFs with the ability to reliably store and retain data.

B. Multiplexers on Xilinx FPGAs

As Multiplexers (MUXes) allow for efficient switching and
transmission of hardware signals with few transistors [6], they
are widely implemented at different levels in FPGA-based
systems. At the interconnect level, they are used as routing
resources to build interconnection between CLBs and other
components in the FPGA fabric. At the CLB level, MUXes
serve to facilitate the implementation of logic functions by
developers by changing signal propagation paths. They can be
expanded to support 4:1 MUXes, 8:1 MUXes, or 16:1 MUXes
by combining varying numbers of LUTs. Last, although the
internal details of LUT and CARRY are not transparent to
developers, a specific number of multiplexers are used to
construct their functional logic.

This paper focuses on the MUXes at the CLB-level, which
typically number above 10,000 in an FPGA board [24], [25]
and can be further categorized into various types. In the
Xilinx 7 series FPGA architecture, each CLB contains 3
types of MUXes, i.e., F7AMUX, F7BMUX, and F8MUX.
In the Ultrascale architecture, each CLB contains 7 types
of MUXes, namely F7MUX AB, F7MUX CD, F7MUX EF,
F7MUX GH, F8MUX BOT, F8MUX TOP, and F9MUX. De-
spite these MUXes have distinct both locations and input
sources, all of them share a common structure, which includes
two data inputs I0 and I1, one select signal S, and one
data output O. Upon asserting S to 0, the MUX outputs O
corresponds to I0, while asserting S to 1 associates the output
O with I1. When mapping a circuit design onto an FPGA
board, developers can utilize the EDA tools to handle the
automatic assignment of the relevant MUXes. Alternatively, by
invoking pertinent hardware primitives, developers can directly
instantiate a specific type of MUXes.

C. Power Side Channels on Multi-tenant FPGAs

In recent years, FPGAs offer significant advantages for cus-
tomized computing due to their inherent re-programmability
and high-performance capabilities. To optimize resource uti-
lization, both industry and academia have dedicated their ef-
forts to enabling multi-tenant cloud FPGA environments [9]. In
such FPGA platforms, a single FPGA instance is shared among
multiple independent tenants simultaneously, significantly en-
hancing resource utilization efficiency. However, multi-tenant
FPGA platforms expose victim tenants to various types of side
channel attacks, particularly power side channels. [42], [48],
[26], [40], [37], [58].

These power side channels leverage a crafted circuit to
indirectly sense the voltage of another circuit sharing the
same PDN with it. The key challenge is to design a sensitive
circuit whose output is affected by the on-chip voltage and
to co-locate it with the victim circuit. Compared with the
above two side channels, the power side channel requires

3

Fig. 2: CARRY-based circuit design. It requires a uniquely
long chain of basic CARRY resources.

no additional assumption and has been frequently studied
via extensive security implications, including extracting cryp-
tographic keys [48], [26], [40], [37], [58], building covert
channels [58], and stealing DNN model architectures [51], [57]
or inputs [37]. As all these works abuse two essential FPGA
computing structures, they are categorized as CARRY-based
and LUT-based crafted circuits.

Firstly, CARRY-based circuits, also known as time digital
converter (TDC)-based circuits [60], [40], [37], [51], utilize
the FPGA carry chain as a delay unit to construct a delay line,
with each output connected to an FF that samples the signal
traversing through the delay line. When the voltage drops,
specific bits in the outputs may flip, allowing the attacker
to infer the voltage level by analyzing the number of bit
flips. However, as shown in Figure 2, all of these CARRY-
based circuits exhibit a unified architecture characterized by a
long CARRY chain structure, making them easily identifiable
by Design Rule Check [44], [15]. Further, these circuits
incur a significant area overhead and are limited to vertical
deployment, posing challenges for their implementation on
multi-tenant FPGAs [36], [48].

Secondly, LUT-based works utilize LUTs to construct their
on-chip sensors, including RO [58], VITI [48], PPWM [47],
and 1LUTSensor [26]. Among these, only RO-based circuits
are realistic design, as it does not require the details about the
victim’s circuit design and location. Specifically, each combi-
national loop contains an odd number of inverters implemented
by LUTs, which can convert a binary input signal into its
complement. The output of the last inverter is combinationally
fed back into the input of the first inverter, with an inverse
value. For instance, in Figure 3(a), the signal passes through
an inverter, followed by an AND gate, and then is looped back
to the input of the same inverter. In Figure 3(b), the signal
goes through an inverter, followed by three buffers, and then
returns to the input of the same inverter. When the attacker
samples them at fixed time intervals, the increment can be
employed to acquire power side channel information. However,
because of its wide security implications, RO-based circuits
have been disabled on commercial cloud services (e.g., AWS)
by scanning the combinational loop structures [41], [30], [29].

The other LUT-based circuits including VITI [48],
PPWM [47], and 1LUTSensor [26], unrealistically assume
the victim’s circuits in collusion with them in the calibration
procedure. Consequently, attackers are required to acquire
the hardware code of the victim circuits to perform offline
calibration, which is nontrivial. Besides, they are all coarse-
grained designs and their security implications are limited to

(a) RO circuits in [58] (b) RO circuits in [14]

Fig. 3: Examples of RO circuit design. All of them contain
a combinational loop where the signal propagates through a
series of logic gates and is ultimately fed back to itself.

extracting AES keys under specific assumptions about both the
location and operating frequency of AES circuits. For instance,
as demonstrated in [26], out of the six placements evaluated,
the full key can only be extracted in a single placement.

Recently, Spielmann et al. utilize routing resources (e.g.,
wires) to craft Routing delay sensor (RDS). However, as the
delay induced by wires is much smaller than the delay of basic
computing resources (e.g., CARRY and LUT), its calibration is
extremely complex. First, they need to use LUTs and CARRYs
together to achieve a fine-grained configuration of initial delay.
Second, they require the victim circuit to collude with their
sensor to pick the most sensitive configuration for the given
voltage fluctuations. To achieve this, the attacker is required
to obtain the details about the victim’s circuit design (i.e.,
hardware code) and location, which is unrealistic.

III. MUXLEAK

A. Threat Model and Assumptions
In this paper, we adopt the same threat model for

multi-tenant cloud-FPGA used in related hardware security
works [42], [48], [38], [26], [47], [57], as well as the FPGA vir-
tualization works [34], [52], [27], [49]. Particularly, platform
providers enforce a strict logic isolation by supplying each
tenant with a physically exclusive FPGA region for their circuit
deployment. To optimize power efficiency, these circuits use a
shared on-chip PDN for power supply. With an FPGA region
allocated, a tenant is allowed to define customized placements
and routing constraints tailored to their designs, except for the
malicious combinational loops that have been banned [41].
Different from [10], [46], we do not make the assumption
that an FPGA chip is attached to a motherboard via PCIe or
to a USB controller through a serial port.

B. Circuit Design
Aligned with previous FPGA-based power side chan-

nels [42], [48], [26], [47], [18], our proposed MUXLeak
utilizes the correlation between signal propagation delay and
supply voltage to deduce the power variations of the FPGA.
Specifically, for the hardware circuits composed of CMOS
transistors, their signal propagation delay is inversely related
to on-chip supply voltage. When the supply voltage decreases,
the signal propagation delay experiences a slight increase,

4

Fig. 4: An overview of MUXLeak.

whereas an excess supply voltage leads to a slight reduction in
the signal propagation delay. While previous on-chip sensors
typically exploit CARRYs or LUTs, they can be effectively
mitigated by scanning the malicious use of these two resources.
To this end, we carefully craft MUXLeak without any reliance
on either LUT or CARRY.

Figure 4 depicts an overview design of MUXLeak, which
consists of MUXes and FFs. We divide MUXes into n
columns, each of which contains m MUXes. For each column,
m MUXes are chained via a tapped delay line and the output
of a preceding MUX is connected to the select signal of the
next MUX. For each MUX, its select signal works with its
two inputs (connected with ‘0’ and ‘1’, respectively) to decide
its output. As the routing resource (e.g., wires) between every
two MUXes is distinctive, we name each routing resource as
RRij (0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1), where i and j are used
to identify their location within MUXLeak. Before reaching a
FF, PIN is required to pass through a series of MUXes and
RRs, which incur a delay to this signal propagation path. As
MUXLeak contains different such signal propagation paths to
generate a fine-grained scale of delay, when voltage fluctuates,
these delays change differently.

To observe the variations in delay, these FFs are configured
as positive edge-triggered and clocked by CLKIN. In this way,
their outputs change only when a rising edge of CLKIN arrives.
Through these FFs, MUXLeak captures the propagation delay
variations on FPGA by using a constant-phase CLKIN signal
to sample the output signal of each MUX. By carefully
configuring Initial Delay in the figure, the delay variation
(i.e.,∆D) can cause the output of FFij to flip from ‘1’ to
‘0’ if the following conditions are met:

(Z + 1/2)× T < D(FFij) < (Z + 1/2)× T +∆D, (1)

where Z ≥ 0, T is the period of the CLKIN signal, and
D(FFij) is the overall delay of the propagation path from
CLKIN to the FF located at (Columni, Rowj).

After deploying MUXLeak onto an FPGA board, the at-
tacker first needs to calibrate the attack circuit by configuring

the initial delay to make sure that the sensor output can con-
sequently change when the on-chip voltage starts fluctuating.
When the clock signal reaches its rising edge, MUXLeak
samples all the outputs from FFs as its raw value, coined as
output. Further, this raw value of one sampling is converted
into a numerical value by calculating its Hamming weight [15],
[42], termed as readout.

C. Sensing Voltage Fluctuation
In this section, we discuss how MUXLeak senses the voltage

fluctuations at runtime. We further investigate factors that
affect the sensitivity of MUXLeak. To achieve this, we need
to establish the relationship between voltage fluctuations and
delay variations. As the delay variations can induce bit flips
in the MUXLeak’s output, if there is a definite correlation
between the voltage and delay, we can use the bit flips in
MUXLeak’s output to sense the voltage level.

As illustrated in Figure 4, the CLKIN signal goes through
different paths to reach different FFs. To begin with, we define
the delay of the propagation path from CLKIN to the FF located
at (Columni, Rowj) using Equation 2:

D(FFij) = Dinitial+

i−1∑
t=0

D(RRt0)+

j∑
t=0

D(RRit)+

j∑
t=0

D(MUXit),

(2)
where D(RRit) is the delay through the corresponding

routing resource at (Columni, Rowt), D(MUXit) is the
delay of the MUX placed at (Columni, Rowt), and Dinitial is
a pre-configured delay. We note that the routing resource here
specifically refers to the wires and switches connecting two
CLBs, which is composed of CMOS logic and hence sensitive
to voltage.

For each gate inside the circuits, a decrease in supply voltage
induces an increase in signal propagation delay [60]. The delay
of a gate can be approximated to be inversely proportional to
its supply voltage:

Delay = k × V oltage−1, (3)

where Delay can be any gate inside one circuit, V oltage is
the corresponding voltage, k is a constant.

As the delay of each gate can be modeled to be approxi-
mately the same [58], we make the following approximation
that the delay of each signal propagation path is also inversely
proportional to its supply voltage:

D(FFij) ∝ V −1
ij . (4)

As described in Section III-B, the delay variations can cause
some bits of MUXLeak’s output to flip. After establishing
the relationship between voltage and delay in Equation 4, we
can utilize the number of bit flips within MUXLeak’s output
to sense the voltage fluctuations. Figure 5 demonstrates an
example timing diagram of MUXLeak, where the waveform
of each FF has the same frequency but different phases. The
waveforms in Figure 5(a) illustrate the behavior of MUXLeak
when the PDN is idle, while the waveforms in Figure 5(b)
illustrates the behavior for the case of a busy PDN. For each
case, the vertical dotted line shows an instance of a rising edge

5

（1）

（1）

（1）

（1）

CLKIN

Q01

Q00

Q0(m-1)

Q0m

.

.

.

Qn(m-1)

Qnm

.

.

.

（0）

（1）

.

.

.
.
.
.

PIN

(a) Idle PDN

（1）

（1）

（1）

（0）

CLKIN

Q01

Q00

Q0(m-1)

Q0m

.

.

.

Qn(m-1)

Qnm

.

.

.

（0）

（0）

.

.

.
.
.
.

PIN

(b) Busy PDN

Fig. 5: An example timing diagram of MUXLeak. The impact of PDN instability is exaggerated to amplify the visual clarity.

on CLKIN. Each FFij captures the momentary value of Qij at
the first rising edge of CLKIN and outputs the captured value
until the next rising edge on CLKIN. By distinguishing whether
the MUXLeak’s output is ‘11...11...10’ or ‘11...10...00’, we can
decide whether PDN is busy or idle.

Aligned with existing on-chip sensors [42], [58], there are
two key characteristics that decide the MUXLeak’s sensitivity:
observable voltage range and granularity. Observable voltage
range refers to the maximum voltage fluctuation that can be
detected. Observable granularity refers to the minimum voltage
fluctuation that can be detected. Both characteristics are crucial
for MUXLeak to capture voltage fluctuations caused by a
victim circuit. Here, we analyse the factors that affect the two
characteristics.
Observable voltage range: For each FF, the observable
range depends on the difference between the maximum and
minimum voltages that can be detected by MUXLeak. If we
approximately assume the voltage of each FF is equal, the
observable voltage range can be represented as:

W∆ ∝ max |D(Fij)−D(F00)|, 0 ≤ i ≤ m−1, 0 ≤ j ≤ n−1. (5)

Given that the MUXes on the same FPGA board share the
same production process and materials, we approximate their
delays to be equal, denoted as D(MUX). By substituting
Equation 2 into Equation 5, we can express W∆ as:

W∆ ∝ max |
i∑

t=1

D(RRt0) +

j∑
t=1

D(RRit) + j ×D(MUX)|,

0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.
(6)

When and only when j = n − 1, W∆ reaches its max-
imum. Considering the delay of MUXes (which is at the
granularity of nanosecond) is much higher than the delay of
routing resources, the observable voltage window is primarily
determined by n.

Observable granularity: The granularity of MUXLeak is
typically expressed as the minimum voltage change that can
be detected. We express it as Equation 7:

G ∝ min |D(Fij)−D(Fkl)|, 0 ≤ i, k ≤ m− 1; 0 ≤ j, l ≤ n− 1.
(7)

By substituting Equation 2 to Equation 7, G can be ex-
pressed as:

G ∝ min|
i∑

t=0

D(RRtj) +

j∑
t=1

D(RRit)−
k∑

t=0

D(RRtl)−
l∑

t=1

D(RRkt)

+ (j − l)×D(MUX)|, 0 ≤ i, k ≤ m− 1; 0 ≤ j, l ≤ n− 1.
(8)

When and only when j = l, G reaches its minimum. Since
the delay of the routing resource is proportional to the length
of the wire and the area of the circuit, we use the routing length
to control its delay. Ideally, within a specified observable range
(n), the variations in routing lengths to reach the FFs placed
in the same row should be evenly increased. Therefore, the
granularity depends on m, which determines the variety of
delays of routing resources. A larger m can result in better
granularity.

D. Calibration
The goal of the calibration is to ensure that the bit-flip

number from MUXLeak’s output changes accordingly when
voltage supply starts fluctuating. As shown in Figure 6(a), for
the uncalibrated MUXLeak, although there is a delay variation
in a busy PDN, it cannot cause a bit flip for MUXLeak’s
output (i.e., Qij). As such, MUXLeak without calibration is
insensitive to voltage fluctuations. To ensure and optimize
MUXLeak’s sensitivity across its different placements on
different FPGA boards, we propose a calibration design for
MUXLeak. After deploying MUXLeak onto the board, the

6

CLKIN

PIN

Qij

Qij
’

（0）

（0）

(a) Uncalibrated

CLKIN

PIN

Qij

Qij
’

（1）

（0）

(b) Calibrated

Fig. 6: An example timing diagram of uncalibrated/calibrated
MUXLeak. The vertical dotted line shows a rising edge of the
CLKIN. Qij denotes the output of FFij in an idle PDN, while
Qij’ denotes the same output in a busy PDN.

Fig. 7: MUX-based calibration design. The red line denotes the
actual signal propagation path. When the last c select signals
are configured as ‘1’, CLKIN is required to go through c + 1
MUXes (within the dashed box) before reaching PIN.

attacker can use this design to dynamically adjust the initial
delay. As shown in Figure 6(b), compared to the uncalibrated
MUXLeak, a calibrated MUXLeak with a configured initial
delay, has more flippable outputs (e.g., Qij) for the given
voltage fluctuations.

Previous realistic attacks [14], [51], [40], [37] rely on the
well-studied basic resources that are in the spotlight of existing
defenses [18], [42] (i.e., LUTs and CARRYs) to generate the
initial delay. Their key observation is that CARRY contains an
enable signal that can dictate the number of units involved in
the function, while LUTs can be carefully configured to enable
a similar signal. To this end, they chain the LUTs or CARRYs
as a tapped delay line and then dynamically adjust the initial
delay via configuring its enable signals.

After observing that a MUX can dynamically change the
signal propagation path via configuring its select signal, we
propose a calibration design with MUXes only. Figure 7 shows
our MUX-based design. To chain these MUXes to generate
initial delay, each MUX is configured such that its I0 is
connected to CLKIN, while its I1 is connected to the output
of the preceding MUX in the sequence. The select signal is
employed to control the signal flow, and it is composed of an
ordered sequence ranging from 0 to 1. As indicated by the red
line, when the last c select signals are set to ‘1’, CLKIN is
required to go through c+ 1 MUXes (within the dashed box)
before reaching PIN.

We adopt the procedures established by previous calibra-
tions [18], [51] to configure the initial delay for MUXLeak.

First, we develop a C-based driver program executed on
the CPU, which can dynamically change the select signal.
Second, we iteratively test all possible values for the number
of activated MUXes via different select signals. Last, the aim
of our calibration is to select an initial delay that maximizes
the number of outputs satisfying Equation 1. Consequently, we
pick the configuration with the closest number of ‘1’ in the
output value to (m × n)/2 when PDN is idle as the optimal
configuration. In this way, the initial delay can be determined
without any involvement of victim circuits.

E. MUXLeak Implementation
MUXLeak is constructed using m × n MUXes and FFs.

Though MUXLeak can be compiled with an arbitrarily chosen
m and n, the optimal size is influenced by the following two
factors.
Sensitivity: As we discussed in Section III-C, the observable
voltage range of MUXLeak mainly depends on the number
of MUXes in each column (m) and the observable granularity
mainly depends on the number of columns (n). To better sense
the voltage fluctuations, these two values should be as large
as possible.
Resource budget: In the multi-tenant FPGAs, the financial
cost associated with MUXLeak is directly proportional to
its consumption of FPGA resources. Besides, the attacker is
restricted to a specific FPGA area with limited resources. To
deploy MUXLeak onto a victim FPGA platform, the resource
utilization should be limited at the same level with existing
on-chip sensors.
Determining m and n: Aligned with TDC [18], we select 128
FFs to implement MUXLeak. Correspondingly, 128 MUXes
are employed. To group these MUXes, we have all possible
pairs of (m,n) and select m = 4, n = 32 for MUXLeak.
Our MUXLeak achieves an average delay difference between
two adjacent MUXes in each column to be (0.904±0.154) ns,
and the Kurtosis of delay difference between each two FFs is
7.81, indicating that these delays are not absolutely uniform
but acceptable.

To precisely map our design to a victim FPGA board, we
directly use MUXF7 primitives to instantiate the MUXes.
The implementation of edge-triggered flip-flops employs FD
primitives. The MUXes in the same column are connected by
using the output of the previous MUX as the select signal input
for the next MUX. Last, on the SoC platforms, we utilize AXI-
4 buses to establish an interface between the ARM processor
and the TDC output and develop a C-based driver that utilizes
mmap system call to obtain the readouts. On the custom built
FPGA-based platforms, the communication between FPGA
and processor is achieved via UART.

Table I lists and compares the FPGA resource utilization
of our implementations of MUXLeak with existing realistic
on-chip sensors [60], [40], [58], [14]. All these results are
obtained from Vivado Floorplanning interface. As described
in Section III-D, we only use MUX for calibration. With
32 MUXes, the MUXLeak can be well calibrated. To make
the chains within MUXLeak has more diverse routing path,
we restrict MUXLeak to a Pblock having ≈ 1.5× MUXes

7

as required (i.e., 120 slices). This intentional over-estimation
facilitates in optimizing the placement and routing (P&R)
process using the Vivado toolkit.

TABLE I: A comparison of MUXLeak and mainstream on-
chip sensors regarding their resource usage.

On-chip Sensor Calibration Sensing Resources
CARRY LUT MUX LUT CARRY MUX FF

RO in [14] 0 0 0 20 0 0 160
RO in [58] 0 0 0 40 0 0 80

TDC in [60]) 4 32 0 0 32 0 128
TDC in [40] 0 18 0 0 16 0 64
MUXLeak 0 0 32 0 0 128 128

IV. EVALUATION

In this section, we first evaluate MUXLeak’s capabilities,
and then apply MUXLeak to mount two side-channel attacks.
Experimental setup: We evaluate MUXLeak on multiple
machines across various FPGA architectures summarized in
Table II, including two System-on-Chip (SoC) boards and one
custom-built machine. To build the custom-built machine, the
Basys 3 board is connected to a Huawei MateBook 14 laptop
via UART and powered through the USB interface. To compile
a C-based program, gcc 7.5.0 is used. To deploy hardware code
onto these FPGAs, we use Vivado version 2019.1 for synthesis,
implementation, and bitstream generation.

A. Characterizing MUXLeak
To show the sensitivity of MUXLeak to voltage fluctua-

tions, we opt for power virus circuits [20] as a victim to
generate varying voltage fluctuations, aligned with [58]. The
power virus circuit consists of a number of instances that are
implemented as RO circuits. Similar to the RO circuit shown in
Figure 3(a), within the power virus circuits, each RO circuit
consists of a single inverter, an AND gate, and an FF. The
operation of the inverter can be controlled by configuring the
enable signal, determining whether it is active to make the
output signal frequently switch between ‘0’ and ‘1’. These
switching activities can cause a voltage fluctuation in PDN.

We compare MUXLeak’s sensitivity with that of the state-
of-the-art sensor (i.e., TDC [60]) on the PYNQ-Z2 board.
First, we implement MUXLeak as described in Section III-E.
Second, we follow [60]) to reproduce a TDC circuit and its
resource usage is shown in Table I. We then deploy MUXLeak
(resp., TDC) via the same sampling frequency (200 MHz) and
placement restriction (i.e., Pblock).
MUXLeak’s sensitivity under different victim activities:
Our first experiment is to characterize the readout change
of MUXLeak to various victim activities. Specifically, we
create 16,000 instances of power viruses to cover over 60%
routing places of our PYNQ board and activate about 40% of
available LUT resources (16,000 instances is a high workload
that unlikely occurs for normal circuits). We then divide them
into 32 groups and each group has 500 evenly-distributed

TABLE II: System configurations.

Property PYNQ-Z2 ALINX AXU3EGB Basys 3

FPGA Family Zynq-7000 Zynq UltraScale+ MPSoC Artix-7
Number of MUXes 39,900 61,740 15,600

Logic Cells 85,000 154,350 33,280
Clock Frequency 125 MHz 200 MHz 100 MHz

FPGA Core Voltage 0.95∼1.0 5V 0.825∼0.876 V 0.95∼1.05 V
CPU Model Cortex-A9 Cortex-A53 i7-10510U

Memory (DRAM) 512 MB 5 GB 16 GB
OS Ubuntu-18.04 Ubuntu-18.04 Ubuntu-20.04

Fig. 8: The sensitivity of MUXLeak and TDC [18] in the same
placement under different victim activities.

instances. When we activate a varying number of these groups,
the voltage varies from 33 levels. For each level, we collect
100,000 readouts from MUXLeak (resp., TDC) and take the
average of them as the final result to compute Pearson correla-
tion coefficient and regression coefficients. Pearson correlation
coefficient is used to assess the strength and direction of the
linear association, while the regression coefficient measures
the impact of these two values in a linear regression model.

Figure 8 shows the relationship between these readouts and
the number of activated power virus instances. These two
values of MUXLeak exhibit a roughly linear relationship with a
Pearson correlation coefficient of -0.981, while TDC achieves
-0.994. The close proximity of these correlation coefficients
to -1 indicates a strong linear relationship, demonstrating that
all the evaluated voltage levels fall within the observable
range of MUXLeak and can be accurately estimated using its
readout. Furthermore, compared with the most sensitive on-
chip sensor (i.e., TDC), MUXLeak achieves a high regression
coefficient of -0.94, while TDC achieves -0.60. This indicates
that MUXLeak achieves the same order of granularity under
the given sensor placement.
MUXLeak’s sensitivity under different placements: In a
multi-tenant FPGA, spatial proximity between a crafted circuit
and a victim’s circuit is beyond the attacker’s control. As such,
we characterize the readout change of MUXLeak with respect
to their spatial proximity to victim logic that consumes power.
Specifically, we instantiate 8,000 instances of the power virus,
and constrain the placement of the power virus to region 1
and region 2 in Figure 9(a)). Subsequently, we put MUXLeak
(resp., TDC) in each of the 6 FPGA regions via a Pblock
constraint with all the 8,000 power virus instances off and on.

8

(a) (b)

Fig. 9: The sensitivity of MUXLeak and TDC [18] under
different placements. The index as the x-axis in Figure 9(b)
corresponds to the region index in Figure 9(a). The dashed line
indicates the average value of a sensor.

We sample 100,000 readouts under each setting and calculate
their average.

As shown in Figure 9(b), MUXLeak successfully senses
the given voltage fluctuation under all the above placements.
Specifically, MUXLeak achieves the best performance when it
is placed closest to the victim circuit (i.e., region 2). Further,
when MUXLeak is placed under the worst-case placement
(i.e., region 3 or region 5), its readouts are still sensitive to
the voltage fluctuations. Last, compared with TDC, MUXLeak
achieves the same level of observable granularity under all
placements.

B. Extracting Cryptographic Keys
AES is the most widely adopted symmetric-key crypto-

graphic algorithm, included in almost all modern crypto li-
braries. It operates on fixed-length data blocks and offers key
sizes of 128, 192, or 256 bits, providing versatility for various
applications. Today, AES has been implemented in different
devices, including hardware circuits on FPGA platforms [4],
[21], [7].

Prior work has demonstrated that a remote attacker can
extract the full secret key of AES circuits via Correlation
Power Analysis (CPA) attacks [40], [15], [45], [11]. These
attacks leverage the Pearson Correlation Coefficient [8] to
detect linear dependencies between voltage fluctuations during
AES circuit execution and hypothetical power calculated from
the ciphertext with a guessed key. To achieve this, attackers
first utilize the Hamming weight and Hamming distance power
models to estimate the power consumption for each possible
key value. Then, they use their own side channel to obtain the
power-related information. Last, they sort each guessed value
according to its correlation coefficient to determine the true
key value. The number of traces used by attackers depends on
the resolution of their side channel, ranging from 1,000 [11]
to more than 1,000,000 [48].
Experimental setup: We implement an open-source AES-
128 module [4] that co-resides with MUXLeak on the Basys3
board. Besides, we re-implement TDC for extracting the AES
key as a comparison. By default, the clock frequencies of the

attack circuit and the AES are set to 200 MHz and 20 MHz,
respectively. When investigating the impact of AES frequency
on our attack, the maximum frequency for AES is set to 100
MHz, as the clock frequency of Basys3 is 100 MHz, as shown
in Table II.

For each attack, we collect 100,000 power side-channel
traces. In each trace acquisition, we transmit the key K and
the plaintext PT to the AES core, and record the MUXLeak’s
readouts obtained during AES encryption. To avoid plaintext
repetition, we employ the current ciphertext as the subse-
quent plaintext. To simplify the process, we utilize the start
encryption signal to trigger the collection of a sensor trace.
Please note that in practical attacks, attackers can resort trace
alignment and automatic triggering techniques as described
in [40] to avoid reliance on this signal. To evaluate the
performance of MUXLeak, we run the key extraction attack
under 8 placements and 4 different AES clock frequencies.
Under each setting, we repeat the experiments five times (each
time with a different key) to ensure more robust results, aligned
with [42]. The keys and plaintexts employed in this evaluation
are listed in Table III.

We opt for the key rank (KR) estimation metric, which
assesses the number of key candidates the attacker needs
to test [17]. Due to the bounded error in existing key rank
estimation algorithms, the key rank is reported as a tight range
with an upper bound and a lower bound. For example, if an
attacker has no side-channel information, then the upper key
rank equals the entire key space, i.e., 2128 in the case of
AES-128. Alternatively, when the entire key is broken, the
lower bound of the KR drops to unity and the upper bound
of the KR tightly bounds the range, signaling the correct
key is recoverable with a negligible number of guesses. In
this situation, attackers can sort each guessed byte value by
correlation coefficient and thus acquire the true AES key. To
save the computation time, we use the open-source analyzing
tool [11] to run our CPA analysis on an NVIDIA GeForce
RTX 3090 GPU.
Experimental results: Figure 10 shows the average upper and
lower bounds of the key rank estimation metric to evaluate
the impact of the placement of MUXLeak. Figure 10(a) is
a color gradient that rates all 8 experiment locations based
on their key rank with 20k power traces, revealing that the
efficacy of a power analysis attack can be deduced to be
reliant on the placement of MUXLeak on the FPGA. This
observation aligns with the findings reported in [48], [42],
where the location-dependent sensitivity is attributed to the
non-uniformity of the PDN across the FPGA board. Moreover,
Figure 10(b) shows the key rank variability of MUXLeak

TABLE III: Key and plaintext values used in the evaluation.

Secret Key Key Value Plaintexts

Key1 0x7d266aecb153b4d5d6b171a58136605b

PT0 = 0
PTi+1 = CTi

Key2 0xe3fb107fa4aaeb7130f411d4c88dbf6c
Key3 0xa89e2fd6926dc2478402b717631d08ce
Key4 0xa3a03d60c06457dc65d8afd5815f629c
Key5 0xe1055ac2abadea4fc7fc6be1310448d9

9

MAX

AES

M2

M3

M6

M4 M5

M7 M8

M1

Controller

MIN

(a) (b)

Fig. 10: Key rank estimation for MUXLeak. The curves in
Figure 10(b) are named after the number on each placement
shown in Figure 10(a).

TABLE IV: Number of traces required to break the full AES
128-bit key for different sensor placements. MUXLeak just
requires 20k-45k traces to extract the full key.

Setting Traces to Extract Full Key (×1000)

M1 M2 M3 M4 M5 M6 M7 M8 Average

MUXLeak 45 25 41 37 40 35 28 20 33.9
TDC [18] 48 60 45 63 35 46 38 50 48.2

across 5 selected placements out of the total eight, including
the best and worst-case placements, as well as the placement
closest to the victim circuit. Each placement is identified by
its corresponding number, as indicated adjacent to them in
Figure 10(a). The full results are summarized in Table IV.
Outperforming the TDC, MUXLeak just requires 20 k-45 k
traces to extract the full key.

We then evaluate the impact of the AES frequency on our at-
tack, utilizing the worst-case placement for attackers (i.e., M1).
Figure 11 illustrates the corresponding key rank outcomes.
Notably, even with the worst-case placement, MUXLeak has
the capability to expose the entire AES key within 55k
traces across various operating frequencies from 10 MHz to
100 MHz. Furthermore, we note that the performance of the
attack is dependent on the frequency. When the frequency is
set to 10 MHz, a mere 30k traces are required to recover the
full key. Under all the above settings, the time for extracting
the full AES key ranges from 0.93 to 2.54 hours.

C. Stealing DNN Model Architectures

To speed up the inference process and reduce energy con-
sumption, FPGA-based DNN accelerators have been widely
deployed in high-performance cloud computing platforms [38],
[57]. Compared to CPUs and GPUs, FPGAs have significant
advantages in performance and power consumption for exe-
cuting model inferences [35], [53]. For instance, in a standard
MLPerf [39] benchmark, AMD Xilinx’s high-end AI Adaptive
Compute Acceleration Platform (ACAP) VCK5000 achieves

Fig. 11: The impact of the AES frequency on our attack.
MUXLeak has the capability to expose the entire AES key
within 60k traces across various operating frequencies under
the worst placement, i.e., M1 in Figure 10(a).

1.8× frames per second per watt compared to the Nvidia
Ampere flagship GPU (i.e., A100 SXM).

However, due to the valuable and confidential nature of
their optimized architectures which require significant time
and effort to develop, these DNN accelerators have been
the target of remote attackers [57], [51], [37]. Furthermore,
knowledge of a specific DNN architecture can facilitate many
other adversarial attacks such as adversarial example attacks
and model extraction attacks. The success rate of such attacks
is highly dependent on the similarity between the target victim
model and the substitute model [12], [54]. Our key insight of
using MUXLeak to steal DNN architectures from an FPGA-
based accelerator is that the model inference is performed
in layer order. As each layer runs, the voltage will fluctuate
by different magnitudes. Attackers can exploit MUXLeak to
capture and then analyze this information.

To mount a model architecture stealing attack via our
MUXLeak side channel, we assume that a MUXLeak circuit
is co-located with the victim FPGA accelerator circuit. The
attacker’s objective is to recover the architecture of the co-
located DNN model through the MUXLeak side channel. As
shown in Figure 12, the attack has two phases: an offline train-
ing phase and an online attack phase. In the offline training
phase, we collect a sufficient number of MUXLeak traces to
construct a well-trained sequence-to-sequence classifier, which
can translate a MUXLeak trace to its corresponding layer
types. In the online attack phase, we either query the black-box
target model or wait for its inference process to initiate, during
which we utilize the co-located MUXLeak circuit to gather the
corresponding MUXLeak trace. We then employ the offline-
trained classifier to recover the victim model structure.
Experimental setup: We carry out our experiments on our
PYNQ-Z2 board. The victim DNN model is implemented by
an open-source framework [57]. To collect the dataset, we gen-
erate 120 different random models and deploy them separately
on the FPGA board. These models have random numbers (in
the range of [4, 16]) and types of network layers, including
various model architecture families (e.g., AlexNet, VGG, and

10

Fig. 12: MUXLeak-based model architecture stealing.

random architectures). The model size is constrained by the
FPGA logic resources. We collect 40 traces for each model and
split the traces into 10 folds and select one fold as the test set.
The input size used by these models is assumed as 3×64×64.
The models are pre-trained on Tiny ImageNet-200 dataset,
which comprises 200 image classes. The collected trace is a
sequence in which the MUXLeak readouts are arranged in the
temporal order, which represents the switching activities on
the FPGA at different moments.

We use a Transformer model [51] as the classifier to translate
a side channel trace to corresponding model layer sequence,
which adopts a single-layer encoder and a single-layer decoder.
This model utilizes weight sharing between the decoder em-
bedding and the decoder projection to enhance generalization.
We use the Adam optimizer with OneCycleLR scheduler to
train the classifier and choose the cross-entropy loss function to
evaluate its performance. The classifier is trained in a machine
with an NVIDIA GeForce RTX 3090 GPU (24 GB video
memory), Intel i9-10920X CPU (24 logical cores) and 128
GB DRAM memory. The deep learning framework used here
is PyTorch 2.0.1 with Python 3.8.13. Aligned with previous
work [12], [55], we select Levenshtein Distance Accuracy
(LDA) as a metric to evaluate the structure recovering per-
formance, which represents the similarity between a predicted
structure and a ground-truth structure.
Experimental results: Table V reports the LDA for different
types of layers when the embedding dimension is set as
128, 256, 512, and 1024 respectively. We observe that the
Transformer with the dimension of 512 achieves the best
performance of 91.1%. Table VI shows the predicted layer
sequences of AlexNet and VGG11 when selecting the embed-
ding dimension as 512. As each model architecture is tested for
40 traces, for the predicted sequence, we show one of the bad
cases, and the accuracy is averaged across all 40 traces. We
observe that the incorrect layer is more likely to appear in the
latter half. We believe that this may be due to the smaller data
size in the latter half of the layer, resulting in less significant
changes in power consumption and shorter computation time
for these layers.

V. DISCUSSION

Hiding the power consumption patterns: As our MUXLeak
relies on the precise side channel information obtained from
a shared PDN, a straightforward mitigation is to eliminate
the voltage fluctuations with the improvements in the PDN.

TABLE V: Classification accuracy (%) of network steps with
different embedding dimensions.

Dimension Convolutional Pooling Fully-connected Overall

128 83.2 87.8 98.3 87.3
256 85.3 86.6 97.8 87.8
512 88.2 90.3 99.1 91.1

1024 86.1 86.3 97.8 88.2

TABLE VI: The layers of profiled models (selected from 12
tested models). C = Convolutional Layer, P = Pooling Layer,
F = Fully-connected Layer.

Model Original Layer Sequence AccuracyPredicted Layer Sequence

AlexNet C-P-C-P-C-C-C-P-F-F-F 89.4%
C-P-C-P-C-C-C-C-P-F-F-F

VGG11 C-P-C-P-C-C-P-C-C-P-C-C-P-F-F-F 90.3%
C-P-C-P-C-C-P-C-C-C-P-F-F-F

However, while PDN aims to maintain a stable voltage supply
to each tenant circuit, it still cannot eliminate variations in
current [59], [22]. The inherent challenges of optimizing power
distribution for diverse and unpredictable workloads [43],
coupled with the necessity for innovative isolation and stabi-
lization solutions [50], render this problem inherently complex
and time-consuming to address.

An alternative approach is to inject artificially-introduced
random noise to PDN to hide the power consumption patterns
of victim circuits. To achieve this, there has two approaches
for developers. First, they can modify their functional logic
design to construct a constant-power implementation, thereby
masking the power consumption of every operation. However,
such modification requires developers to invest significant ef-
fort, especially for the large-scale projects. Second, developers
can deploy a fence circuit [16], [28], [23] to isolate the victim
circuit from the attacker-crafted circuit. These fence circuits
are placed surrounding the victim circuits to dynamically
inject noise to PDN. However, to effectively conceal the
power consumption patterns caused by the victim circuit, the
fence circuits are required to incur non-negligible execution
overhead. Policies that can introduce such distortions with
minimum performance overhead is non-trivial.
Preventing crafted circuits from co-residing with victim:
As existing power side channel attack relies on physically
residing a crafted circuit with the victim circuits on the same
FPGA board, an effective way to mitigate this risk is to prevent
the attacker from co-locating her circuit with the victim. To
achieve this, users can purchase the ownership of the whole
FPGA board as well as the hosting server, which can eliminate
the threat of side-channel-related attacks induced by sharing
FPGA resources. However, this approach increases the costs of
deploying FPGA circuits for cloud service users. Alternatively,
cloud service providers can improve their scheduling policy to
scatter the circuits from different users or companies on the
cloud, which can effectively decrease the chance of attacker’s

11

circuits co-locating with the victim.
Developing effective DRC tools: Besides the co-residence
prevention above, several design rule checking (DRC) tools
have been proposed to detect malicious circuits by analyzing
bitstreams, RTL designs, or netlists [3], [44], [30], [29], [19].
In practice, cloud providers may deploy such tools to inspect
tenant submissions and block circuits containing suspicious
structures. Since MUXLeak is the first to exploit MUXes to
craft malicious circuits for power side channels, it is believed
to bypass current DRC tools focused on detecting attacks
involving LUTs and CARRY chains. However, MUXLeak’s
highly regular structure of chained MUXes may present a clear
fingerprint that pattern-based detection tools could leverage.
This underscores an ongoing arms race between malicious
design techniques and detection mechanisms. We frame the de-
velopment of effective DRC tools tailored to detect MUXLeak
as an open research direction.
Testing MUXLeak on non-Xilinx platforms: Aligned with
prior FPGA power side-channel studies [58], [57], [56], [42],
we evaluate MUXLeak on three Xilinx FPGA-based platforms,
including the Xilinx UltraScale architecture used in AWS
EC2 (specifically, the Xilinx UltraScale+ VU9P FPGAs [5]).
We focus on Xilinx devices because it is the largest FPGA
vendor [1] and provides comprehensive documentation. While
MUXes are also present in other non-Xilinx FPGA platforms
(e.g., Intel [2]), substantial differences in logic and routing
architectures may impact the feasibility of MUXLeak. Thus,
applying MUXLeak and other FPGA power side-channel tech-
niques to non-Xilinx platforms remains an important direction
for future work.

VI. CONCLUSION

In this paper, we reveal MUXLeak, a novel on-chip sensor
that exploits MUXes to craft a stealthy power side channel
on multi-tenant FPGAs. Our key observation is that fine-
grained power side channel information can be leaked via
the delay variations of MUXes, which exhibit an inverse
relationship with on-chip voltage. By establishing carefully
designed connections, we can measure these delay variations
by monitoring the number of bit flips in MUXLeak’s output.
To demonstrate the viability of MUXLeak, we perform a
comprehensive evaluation of MUXLeak on three FPGA-based
platforms. First, we show that MUXLeak achieves comparable
sensitivity with TDC (i.e., the most sensitive crafted circuit
until now). We then leverage MUXLeak to mount realistic
power side channel attacks, successfully extracting AES keys
within 2.54 hours and stealing DNN model architectures with
an accuracy of over 90%.

VII. ACKNOWLEDGEMENTS

This work was supported by the National Key R&D Program
of China (No. 2022YFB2703301), the Science and Technology
Development Program of Two Districts in Xinjiang, China
under Grant No. 2024LQ03004, the Australian Research Coun-
cil (FL240100217). Jinhua Cui’s work was supported by the
National Natural Science Foundation of China (Grant No.

62402169), the Key Research and Development Program of
Hunan Province (Grant No. 2024JK2011), the CCF-Huawei
Populus Grove Fund (CCF-HuaweiTC202402).

REFERENCES

[1] “Field-programmable gate array (fpga) market (2024-
2032): Growth forecast,” https://www.linkedin.com/pulse/
field-programmable-gate-array-fpga-market-2024-2032-14kuf/, 2024.

[2] “Arria 10 core fabric and general purpose i/os handbook,”
https://www.intel.com/content/www/us/en/docs/programmable/683461/
current/alm-resources.html, 2025.

[3] Q. A. Ahmed, T. Wiersema, and M. Platzner, “Proof-carrying hardware
versus the stealthy malicious lut hardware trojan,” in International
Symposium on Applied Reconfigurable Computing. Springer, 2019,
pp. 127–136.

[4] AIST and T. University, “Aes encryption core,” 2007. [Online].
Available: http://www.aoki.ecei.tohoku.ac.jp/crypto/

[5] Amazon, “Amazon ec2 f1 instances,” 2024. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1

[6] C. Chiasson and V. Betz, “Coffe: Fully-automated transistor sizing for
fpgas,” in International Conference on Field-Programmable Technology
(FPT), 2013, pp. 34–41.

[7] P. Chodowiec and K. Gaj, “Very compact fpga implementation of the
aes algorithm,” in Cryptographic Hardware and Embedded Systems,
2003, pp. 319–333.

[8] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and I. Cohen, “Pearson correlation coefficient,” Noise reduction in
speech processing, pp. 1–4, 2009.

[9] G. Dessouky, A.-R. Sadeghi, and S. Zeitouni, “Sok: Secure fpga multi-
tenancy in the cloud: Challenges and opportunities,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), 2021, pp.
487–506.

[10] C. Fang, N. Miao, H. Wang, J. Zhou, T. Sheaves, J. M. Emmert,
A. Sasan, and H. Homayoun, “Gotcha! i know what you are doing
on the fpga cloud: Fingerprinting co-located cloud fpga accelerators
via measuring communication links,” in ACM SIGSAC Conference on
Computer and Communications Security, 2023.

[11] H. Gamaarachchi, H. Ganegoda, and R. Ragel, “The a to z of building
a testbed for power analysis attacks,” in International Conference on
Industrial and Information Systems, 2015, pp. 501–506.

[12] Y. Gao, H. Qiu, Z. Zhang, B. Wang, H. Ma, A. Abuadbba, M. Xue,
A. Fu, and S. Nepal, “Deeptheft: Stealing dnn model architectures
through power side channel,” in IEEE Symposium on Security and
Privacy, 2023.

[13] I. Giechaskiel, K. Rasmussen, and J. Szefer, “Reading between the dies:
Cross-slr covert channels on multi-tenant cloud fpgas,” in IEEE 37th
International Conference on Computer Design (ICCD), 2019, pp. 1–10.

[14] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “C3apsule: Cross-fpga
covert-channel attacks through power supply unit leakage,” in IEEE
Symposium on Security and Privacy, 2020, pp. 1728–1741.

[15] O. Glamočanin, L. Coulon, F. Regazzoni, and M. Stojilović, “Are
cloud fpgas really vulnerable to power analysis attacks?” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2020,
pp. 1007–1010.

[16] O. Glamočanin, A. Kostić, S. Kostić, and M. Stojilović, “Active wire
fences for multitenant fpgas,” in International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, 2023, pp. 13–20.

[17] C. Glowacz, V. Grosso, R. Poussier, J. Schüth, and F.-X. Standaert,
“Simpler and more efficient rank estimation for side-channel security
assessment,” in International Workshop on Fast Software Encryption,
2015, pp. 117–129.

[18] D. R. E. Gnad, C. D. K. Nguyen, S. H. Gillani, and M. B. Tahoori,
“Voltage-based covert channels using fpgas,” ACM Transactions on
Design Automation of Electronic Systems, 2021.

12

https://www.linkedin.com/pulse/field-programmable-gate-array-fpga-market-2024-2032-14kuf/
https://www.linkedin.com/pulse/field-programmable-gate-array-fpga-market-2024-2032-14kuf/
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/alm-resources.html
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/alm-resources.html
http://www.aoki. ecei.tohoku.ac.jp/crypto/
https://aws.amazon.com/ec2/instance-types/f1

[19] D. R. E. Gnad, S. Rapp, J. Krautter, and M. B. Tahoori, “Checking
for electrical level security threats in bitstreams for multi-tenant fpgas,”
in International Conference on Field-Programmable Technology, 2018,
pp. 286–289.

[20] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on fpgas using valid bitstreams,” in International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2017, pp.
1–7.

[21] T. Good and M. Benaissa, “Aes on fpga from the fastest to the smallest,”
in Cryptographic Hardware and Embedded Systems, 2005, pp. 427–440.

[22] H. Homulle, S. Visser, B. Patra, and E. Charbon, “Design techniques
for a stable operation of cryogenic field-programmable gate arrays,”
Review of Scientific Instruments, vol. 89, no. 1, 2018.

[23] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin,
T. Nguyen, and C. Irvine, “Moats and drawbridges: An isolation prim-
itive for reconfigurable hardware based systems,” in IEEE Symposium
on Security and Privacy, 2007, pp. 281–295.

[24] A. Inc., “7 series fpgas configurable logic block: User guide
(ug474),” 2016. [Online]. Available: https://www.xilinx.com/support/
documentation/user guides/ug474 7Series CLB.pdf

[25] ——, “Ultrascale architecture configurable logic block: User guide
(ug574),” 2017. [Online]. Available: https://www.xilinx.com/support/
documentation/user guides/ug574-ultrascale-clb.pdf

[26] D. Jayasinghe, B. Udugama, and S. Parameswaran, “1lutsensor: De-
tecting fpga voltage fluctuations using lookup tables,” Cryptographic
Hardware and Embedded Systems, pp. 51–86, 2024.

[27] D. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make sense
on FPGAs?” in USENIX Symposium on Operating Systems Design and
Implementation, 2020, pp. 991–1010.

[28] J. Krautter, D. R. Gnad, F. Schellenberg, A. Moradi, and M. B.
Tahoori, “Active fences against voltage-based side channels in multi-
tenant fpgas,” in IEEE/ACM International Conference on Computer-
Aided Design, 2019, pp. 1–8.

[29] J. Krautter, D. R. Gnad, and M. B. Tahoori, “Mitigating electrical-
level attacks towards secure multi-tenant fpgas in the cloud,” ACM
Transactions on Reconfigurable Technology and Systems, pp. 1–26,
2019.

[30] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,
“Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale+
fpgas,” ACM Transactions on Reconfigurable Technology and Systems,
pp. 1–31, 2020.

[31] J. Landgraf, T. Yang, W. Lin, C. J. Rossbach, and E. Schkufza,
“Compiler-driven fpga virtualization with synergy,” in Architectural
Support for Programming Languages and Operating Systems, 2021,
p. 818–831.

[32] J. Liu, S. Zeng, L. Ding, W. Soedarmadji, H. Zhou, Z. Wang, J. Li, J. Li,
Y. Dai, K. Wen, S. He, Y. Sun, Y. Wang, and G. Dai, “Flightvgm: Ef-
ficient video generation model inference with online sparsification and
hybrid precision on fpgas,” in ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, 2025, p. 2–13.

[33] Y. Luo, A. S. Rakin, D. Fan, and X. Xu, “Deepshuffle: A lightweight
defense framework against adversarial fault injection attacks on deep
neural networks in multi-tenant cloud-fpga,” in IEEE Symposium on
Security and Privacy, 2024, pp. 34–34.

[34] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi,
and B. Kasikci, “A hypervisor for shared-memory fpga platforms,”
in Architectural Support for Programming Languages and Operating
Systems, 2020, p. 827–844.

[35] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Automatic compilation of
diverse cnns onto high-performance fpga accelerators,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, pp. 424–437, 2020.

[36] S. Moini, X. Li, P. Stanwicks, G. Provelengios, W. Burleson, R. Tessier,
and D. Holcomb, “Understanding and comparing the capabilities of
on-chip voltage sensors against remote power attacks on fpgas,” in

International Midwest Symposium on Circuits and Systems, 2020, pp.
941–944.

[37] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote
power side-channel attacks on bnn accelerators in fpgas,” in Design,
Automation & Test in Europe Conference & Exhibition, 2021, pp. 1639–
1644.

[38] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “{Deep-Dup}: An adversarial
weight duplication attack framework to crush deep neural network
inmulti-tenant fpga,” in USENIX Security Symposium, 2021, pp. 1919–
1936.

[39] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gard-
ner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” in International Symposium on Computer Architecture,
2020, pp. 446–459.

[40] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside
job: Remote power analysis attacks on fpgas,” IEEE Design & Test, pp.
58–66, 2021.

[41] A. W. Services. (2024) Aws ec2 fpga hdk+sdk errata. [Online].
Available: https://github.com/aws/aws-fpga/blob/master/ERRATA.md

[42] D. Spielmann, O. Glamočanin, and M. Stojilović, “Rds: Fpga routing
delay sensors for effective remote power analysis attacks,” Crypto-
graphic Hardware and Embedded Systems, pp. 543–567, 2023.

[43] B.-H. Su, J.-S. Tang, H.-J. Lee, and C.-B. Tzeng, “Noise analysis and
improvement of power supply network based on power integrity,” in In-
ternational Microsystems, Packaging, Assembly and Circuits Technology
Conference (IMPACT), 2023, pp. 317–320.

[44] T. Sugawara, K. Sakiyama, S. Nashimoto, D. Suzuki, and T. Nagatsuka,
“Oscillator without a combinatorial loop and its threat to fpga in data
centre,” Electronics Letters, 2019.

[45] T. Swamy, N. Shah, P. Luo, Y. Fei, and D. Kaeli, “Scalable and efficient
implementation of correlation power analysis using graphics processing
units (gpus),” in Proceedings of the Third Workshop on Hardware and
Architectural Support for Security and Privacy, 2014, pp. 1–8.

[46] S. Tian, I. Giechaskiel, W. Xiong, and J. Szefer, “Cloud fpga cartogra-
phy using pcie contention,” in IEEE Symposium on Field-Programmable
Custom Computing Machines, 2021, pp. 224–232.

[47] B. Udugama, D. Jayasinghe, H. Saadat, A. Ignjatovic, and
S. Parameswaran, “A power to pulse width modulation sensor for re-
mote power analysis attacks,” Cryptographic Hardware and Embedded
Systems, pp. 589–613, 2022.

[48] ——, “Viti: A tiny self-calibrating sensor for power-variation measure-
ment in fpgas,” Cryptographic Hardware and Embedded Systems, pp.
657–678, 2022.

[49] Z. Wang, G. Zhu, Y. Liu, Y. Chang, K. Zhang, and M. Chen, “Xuni:
Virtual machine abstraction for self-contained and multi-tenant cloud fp-
gas,” in ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2024.

[50] D. Xiao, X.-j. Li, Y. Li, H. Lin, J. Qian, and C. Hu, “The screening
method of board-level decoupling capacitors for multi-power distribu-
tion network,” in Chinese Control Conference, 2023, pp. 7111–7116.

[51] X. Yan, X. Lou, G. Xu, H. Qiu, S. Guo, C. H. Chang, and
T. Zhang, “Mercury: An automated remote side-channel attack to
nvidia deep learning accelerator,” in International Conference on Field
Programmable Technology, 2023, pp. 188–197.

[52] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Architectural
Support for Programming Languages and Operating Systems, 2020.

[53] C. Zhang, S. Cao, G. Dai, C. Geng, Z. Yao, W. Xiao, Y. Liu,
M. Wu, L. Zhang, G. Sun, Z. Ji, R. Wang, and R. Huang, “Fine-
grained structured sparse computing for fpga-based ai inference,” IEEE

13

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://github. com/aws/aws-fpga/blob/master/ERRATA.md

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2024.

[54] X. Zhang, Z. Zhang, Q. Shen, W. Wang, Y. Gao, Z. Yang, and Z. Wu,
“Thermalscope: A practical interrupt side channel attack based on
thermal event interrupts,” in Design Automation Conference, 2024.

[55] X. Zhang, Z. Zhang, Q. Shen, W. Wang, Y. Gao, Z. Yang, and J. Zhang,
“Segscope: Probing fine-grained interrupts via architectural footprints,”
in High Performance Computer Architecture, 2024.

[56] X. Zhang, J. Zou, Y. Yang, Q. Shen, Z. Zhang, Y. Gao, Z. Wu, and
T. Carlson, “LeakyDSP: Exploiting Digital Signal Processing Blocks to
Sense Voltage Fluctuations in FPGAs,” in ACM/IEEE Design Automa-
tion Conference (DAC), 2025.

[57] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. Al Faruque, “Stealing
neural network structure through remote fpga side-channel analysis,”
IEEE Transactions on Information Forensics and Security, pp. 4377–
4388, 2021.

[58] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel
attacks,” in IEEE Symposium on Security and Privacy, 2018, pp. 229–
244.

[59] H. Zhu, W. Cao, and X. Zhang, “Pdnsig: Identifying multi-tenant cloud
fpgas with power distribution network-based signatures,” in IEEE/ACM
International Conference on Computer Aided Design, 2023, pp. 1–8.

[60] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in fpgas,” in
Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays, 2013, pp. 101–104.

Xin Zhang received the B.Sc. degree in informa-
tion security from Hunan University in 2022. He
is currently pursuing the Ph.D. degree with Peking
University, Beijing, China. His research interests
include system security, computer architecture and
side channel attack.

Jiajun Zou received the B.Sc. degree in software
engineering from Hunan University in 2024. He is
currently pursuing the Master degree with Peking
University, Beijing, China. His research interests
include system security and side channel attack.

Zhi Zhang received the Ph.D. degree from The
University of New South Wales. He is a Lecturer
at The University of Western Australia. His current
research interests include hardware security, system
security, and their intersections with AI security. He
was a recipient of USENIX SECURITY 2024 Dis-
tinguished Paper Award and ASIACCS 2023 Distin-
guished Paper Award. He serves as an Associate Edi-
tor for IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING. He also serves on the
Program Committees for ASPLOS, DSN, ASIACCS.

Qingni Shen received the Ph.D. degree from the
Institute of Software Chinese Academy of Sciences,
Beijing, China, in 2006. She is currently a professor
with the School of Software and Microelectronics
and the director of PKU OCTA Lab of Blockchain
and Privacy Computing, Peking University, Beijing,
China. Her research interests include operating sys-
tem security, cloud security and privacy, and trusted
computing. She is a Distinguished Membership of
CCF and an ACM/IEEE Membership.

Yansong Gao (Senior Member, IEEE) is a Lecturer
at the University of Western Australia. He received
his M.Sc degree from the University of Electronic
Science and Technology of China and a Ph.D. de-
gree from the University of Adelaide, Australia. His
current research interests are AI security and privacy,
system security, and hardware security. He serves as
an Associate Editor of IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY AND
IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS.

Jinhua Cui is an Assistant Professor at the College
of Integrated Circuits, Hunan University, China. He
received his Ph.D. in Computer Science from the
National University of Defense Technology (NUDT)
in June 2022. From 2019 to 2021, he was a Research
Assistant at the School of Computing, National
University of Singapore (NUS). Prior to that, he
served as a Senior Research Engineer at the Secure
Mobile Centre, Singapore Management University
(SMU). Dr. Cui’s research lies at the intersection of
trusted computing, microarchitectural security, and

hardware-software co-design. His work has been published in top-tier venues,
including ACM CCS, DAC, DATE, and TCAD.

Yusi Feng received the Ph.D. degree in computer
systems organization from Institute of Information
Engineering, Chinese Academy of Sciences, Beijing,
China, in 2025. She is a postdoctoral researcher at
the Southern University of Science and Technology.
Her research interests include system security and
side-channel attacks.

Zhonghai Wu received the PhD degree from Zhe-
jiang University, Hangzhou, China, in 1997. Previ-
ously, he worked as a postdoctoral researcher with
the Institute of Computer Science and Technology,
Peking University, Beijing, China. Since then, he
has been involved both in research and development
of distributed system, service, and security. He is
currently the dean of the School of Software and
Microelectronics, Peking University, Beijing, China.
His research interests include cloud computing, data
intelligence, and system security.

Derek Abbott (M’85—SM’99—F’05) was born in
South Kensington, London, U.K. He received the
B.Sc. (Hons.) degree in physics from Loughborough
University, U.K., in 1982, and the Ph.D. degree
in electrical and electronic engineering from the
University of Adelaide, Australia, in 1997, under
K. Eshraghian and B. R. Davis. His research interests
include the areas of multidisciplinary physics and
electronic engineering applied to complex systems.
His research programs span a number of areas in-
cluding security, stochastics, game theory, security,

photonics, energy policy, biomedical engineering, and computational neuro-
science. He is a fellow of the Institute of Physics, U.K., an Honorary Fellow
of Engineers Australia and Australian Laureate Fellow. He received a number
of awards, including the South Australian Tall Poppy Award for Science,
in 2004, an Australian Research Council Future Fellowship, in 2012, the
David Dewhurst Medal, in 2015 the Barry Inglis Medal, in 2018, and the
M. A. Sargent Medal for eminence in engineering, in 2019. He has served
as an Editor and/or a Guest Editor for a number of journals, including the
IEEE JOURNAL OF SOLID-STATE CIRCUITS, Journal of Optics B, Chaos,
Fluctuation and Noise Letters, Royal Society OS, PROCEEDINGS OF THE
IEEE, and the IEEE PHOTONICS JOURNAL.

14

	Introduction
	Background and Related Work
	Basic FPGA Resources
	Multiplexers on Xilinx FPGAs
	Power Side Channels on Multi-tenant FPGAs

	MUXLeak
	Threat Model and Assumptions
	Circuit Design
	Sensing Voltage Fluctuation
	Calibration
	MUXLeak Implementation

	Evaluation
	Characterizing MUXLeak
	Extracting Cryptographic Keys
	Stealing DNN Model Architectures

	Discussion
	Conclusion
	Acknowledgements
	References
	Biographies
	Xin Zhang
	Jiajun Zou
	Zhi Zhang
	Qingni Shen
	Yansong Gao
	Jinhua Cui
	Yusi Feng
	Zhonghai Wu
	Derek Abbott

