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Abstract—Interrupts are critical hardware resources for OS
kernels to schedule processes. As they are related to system
activities, interrupts can be used to mount various side-channel
attacks (i.e., monitoring keystrokes, inferring website visits,
detecting GPU activities, and fingerprinting processes). Given
that all these attacks rely on system file interfaces or architectural
timers to probe interrupts, various countermeasures have been
proposed to either remove the unprivileged access to the file
interfaces or detect/cripple architectural timers.

In this work, we propose SegScope, a new technique that
abuses segment protection to provision fine-grained interrupt
observations without any timer. As segment protection is widely
used on x86, SegScope works across a wide range of Intel-
and AMD-based CPUs. Particularly, we observe that while
segment protection preserves the confidentiality of high privileged
domain, it leaves a footprint via the data segment registers values
when an interrupt occurs. With this key observation, SegScope
is crafted by capturing the footprints. To show its security
implications, we evaluate it in four case studies. First, SegScope
has inferred website visits with a respective success rate of 92.4%
on Chrome and 87.4% on Tor Browser in default system settings.
Second, SegScope successfully extracts the keys from Cloudflare’s
Interoperable Reusable Cryptographic Library (CIRCL) v1.1.
Third, SegScope steals DNN model architectures with an accuracy
of over 80%. Last, SegScope effectively reduces the noise of
interrupts to improve the performance of other side channels.
As an example, SegScope reduces the error rate of Spectral side
channel by 56×. Compared with existing timer-based interrupt-
probing techniques, SegScope is fine-grained without introducing
false-positives. Further, we leverage SegScope to craft a fine-
grained timer, as regular timer interrupts as clock edges contain
timestamps. Our evaluation shows that it achieves the same level
of timing granularity as the high-resolution timer, i.e., rdtsc and
rdpru. We then leverage the timer to break KASLR in about
10 seconds and mount a Flush+Reload based Spectre attack.

I. INTRODUCTION

Interrupts are critical to modern OSes, particularly for
process scheduler [1], [22], [63]. An interrupt can switch
current context into kernel, enabling the process scheduler
to preempt a running process and perform essential tasks.
Since interrupts are typically activated when a process requests
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system resources (e.g., network, system calls, etc) or when a
user inputs data through devices, they have been exploited as
a side channel, to monitor keystrokes [31], [51], [58], infer
website visits [9], [77], detect GPU activities [39], [40], and
perform process fingerprinting [12], [39], [40], [57].

These interrupt-based side channel attacks rely on either
unprivileged procfs interface or architectural timers to probe
interrupts. Specifically, interrupt statistics can be acquired by
accessing /proc/interrupts in Linux [12], [40], [57]. However,
such attacks can be easily defeated by removing non-privileged
access to the procfs interface [9], [75]. Besides, the query
of the procfs interface is badly affected by context switches,
typically with a sampling interval at the millisecond level,
resulting in coarse-grained interrupt probing.

The other works [9], [31], [51], [58], [77] use architec-
tural timers to probe interrupts. Considering that a jump in
timestamp will occur if a process is interrupted, a high/low-
resolution timer can be leveraged to observe the jump [9], [31],
[51], [58]. Recently, Zhang et al. [77] have identified a pair
of unprivileged instructions (i.e., umonitor and umwait)
that can be used to probe interrupts. These instructions are
only available to recent Intel microarchitectures since Tremont
and Alder Lake. Particularly, a user process enters into a
light-weight sleep state via the pair of instructions. When
an interrupt occurs, the process will be awakened earlier
than timeout. They observe such timing differences via an
architectural timer.

To constrain the use of architectural timers, a number of
countermeasures [23], [32], [33], [42], [45], [49], [62] have
been proposed. Generally, these countermeasures either detect
timers or cripple them. For example, MASCAT [23] and
Oyama et al. [45] are static binary analysis tools, which can
detect the use of timer-related instructions such as rdtsc.
ARM-based CPUs (e.g., Apple M1) have removed the unpriv-
ileged fine-grained timers [25], [32], [49], [72]. For both Intel-
and AMD-based CPUs, the defender can set the CR4.TSD
bit to prevent unprivileged usage of the high-resolution timers
(e.g., rdtsc, rdtscp, and rdpru ) [1], [16], [22], [30],
[77]. Last, AMD-based CPUs have reduced the resolution of
timestamp counters since its Zen architecture [33].



In such a timer-constrained scenario, existing works [14],
[32], [53], [55], [68] show that the attackers can build their
own timers. Unfortunately, these timers are typically much
noisier than architectural timers [15], [61], making it hard to
use them to probe interrupts. To this end, we ask the following
questions:

Is there a microarchitectural technique across x86 CPUs
probing interrupts without any timers? If yes, what attacks

can be mounted and what information can be leaked?

In this paper, we present SegScope, a new technique that
abuses segment protection on x86 to acquire fine-grained
interrupt observations without relying on any timer. Specif-
ically, when an interrupt occurs and returns from kernel-
space to user-space, CPUs with segment protection will check
data segment registers (e.g., DS, ES, FS, and GS) and clear
them if they contain kernel information or point to a null
segment descriptor. We found that some non-zero selector
values are considered as null segment selector. With this key
observation, we assign a data segment register with a non-
zero null value and this value will be reset to 0 when an
interrupt switches context from kernel-space to user-space.
By checking a pre-assigned data segment register, we can
decide whether a current process has been interrupted. In a
nutshell, while segment protection preserves the confidentiality
of high privileged domain, it leaves a footprint via the value
change in data segment registers when an interrupt occurs.
With this footprint, SegScope is crafted without accessing the
aforementioned pseudo-file interface or timers.

With fine-grained interrupt observations, SegScope is used
as a side channel to infer website visits, similar to [9],
[77]. Our experimental results show that SegScope fingerprints
websites with a respective success rate of 92.4% on Chrome
and 87.4% on Tor Browser in the default system setting. We
further explore new security implications of SegScope via
three more case studies. First, the attacker can use SegScope
rather than architectural timers to construct a loop-counting
program to monitor CPU frequency, which is related to the
workload of CPU. We successfully extract the keys from
Cloudflare’s Interoperable Reusable Cryptographic Library
(CIRCL) v1.1 [17] and steal DNN model architectures with
an accuracy of over 80%. Second, because SegScope can
distinguish the interrupted measurements, it can be used to
effectively reduce the noise of interrupts to enhance other side
channels which are noised by interrupt activities [77]. Taking
the Spectral side channel as an example [77], SegScope has
removed the impacts of interrupts and reduced its error rate
by 56×.

While existing timer-based interrupt probing techniques are
unavailable in timer-constrained scenarios, two representa-
tives (i.e., high-resolution timer based probing [51], [58] and
loop-counting based probing [9], [31]) are compared against
SegScope, results of which show that SegScope is fine-grained
in probing each interrupt without any false positive involved.

Besides, we leverage SegScope to craft a fine-grained timer,
as timer interrupts can be used as clock edges to build a

clock interpolation scheme [53]. With an observation that
different types of interrupts present distinguishable statistical
characteristics, we use statistical methods (e.g., Z-score) to
retain timer interrupts and filter out other interrupts.

To demonstrate the viability of the crafted timer, we perform
a comprehensive evaluation on multiple Ubuntu OSes with
Intel or AMD-based CPUs in either local or Amazon cloud
environments. First, we evaluate its timing granularity and
compare it against the high-resolution timers (i.e., rdtsc on
Intel-based CPUs and rdpru on AMD-based CPUs [30]),
results of which show that the SegScope-based timer achieves
the same level of timing granularity as them. We then leverage
this timer to break KASLR within about 10 seconds and
perform a Flush+Reload [71] based Spectre attack.
Summary of contributions: The main contributions of this
paper are as follows:
• We propose a technique, called SegScope, that abuses
segment protection to precisely probe interrupts. To the best
of our knowledge, this is the first effective probing technique
without any timer. Since segment protection is supported on
x86 by default, SegScope affects mainstream x86-based CPUs.
• The security implications of SegScope are demonstrated via
4 case studies. As a side channel, SegScope has been used
to infer website visits, extract cryptographic keys, and steal
DNN model architectures. Further, SegScope has significantly
reduced the noise of interrupts to enhance other non-interrupt
side channels.
• We further rely on SegScope to probe timer interrupts
and thus craft a fine-grained timer. The crafted timer has
been evaluated on multiple machines with Intel- or AMD-
based CPUs in either local or Amazon cloud environments.
The experimental results show that our timer has the same
order of magnitude as rdtsc and rdpru in terms of timing
granularity. Besides, it has been used to break KASLR within
about 10 seconds and perform a Flush+Reload based Spectre
attack.
Responsible disclosure: We have responsibly disclosed our
findings, with proof-of-concept code1, to Intel and AMD. Both
vendors acknowledged our side-channel attacks.

II. BACKGROUND AND RELATED WORK

A. Timer-based Interrupt Probing Techniques

The majority of existing interrupt side channel attacks [9],
[31], [51], [58] rely on an architectural timer to probe inter-
rupts, which are not applicable in timer-constrained scenarios.
Specifically, some attacks [51], [58] use a high-resolution
architectural timer to observe timestamp jumps. If a given
process is interrupted, there will be a jump in its resulted
timestamp, leaking interrupt information. The leaked interrupts
can be induced by keystrokes, which indicate target victim’s
input. To this end, the attacks can infer target victim’s pass-
word or secrets by correlating the interrupt information with
keystrokes.128ge Alternatively, other works [9], [31] apply a

1The source code is released at https://github.com/zhangxin00/segscope.
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low-resolution architectural timer to probe interrupts. Particu-
larly, they build a loop counting program, inside which a low-
resolution timer is invoked to sample a self-increment counter
at fixed time intervals. If an interrupt occurs in the interval,
the counter value will be lower, resulting in an interrupt
detection. With such a loop-counting program, keystrokes are
monitored [51] and websites are fingerprinted [9]. We compare
SegScope with these probing techniques in Section III-B.

Besides, Zhang et al. [77] exploit two unprivileged instruc-
tions (i.e., umonitor and umwait that are only available
to recent Intel microarchitectures) to probe interrupts. Partic-
ularly, a user process enters a light-weight sleep state via the
two special instructions. When an interrupt comes, the crafted
process is awakened earlier than timeout, resulting in more
code executions in fixed time intervals. The timer interval is
also fixed by a low-resolution architectural timer. With this
interrupt probing technique, website visits can be inferred with
an accuracy of 78%.

KeyDrown [51] probes keystroke-related interrupts by
observing CPU cache state changes. When a keystroke
event occurs, the keyboard interrupt handler will be exe-
cuted and cached into its corresponding CPU cache sets.
Thus, KeyDrown applies Prime+Probe [36] to monitor
cache state changes in targeted CPU cache sets. Generally,
Prime+Probe leverages an architectural timer to time access
to targeted cache sets. To find targeted cache sets, they also
need physical addresses of the keyboard interrupt handler,
which is not feasible to an unprivileged attacker.

B. Segment Protection in x86

The segment protection is designed to improve fault toler-
ance and system security [1], [3], [22] , ensuring that a user
process cannot access the kernel address outside controlled
and well-defined interfaces. To achieve this, modern operating
systems provide multiple privilege levels to access resources,
which assign a value from 0 to 3 to key objects recognized
by processors. The highest privilege level corresponds to 0.

To prevent a low-privilege program from accessing seg-
ments for a high-privilege data segment, each segment has a 2-
bit Descriptor Privilege Level (DPL), indicating the minimum
privilege required to access the segment. Correspondingly,
each CPU core has a 2-bit Current Privilege Level (CPL)
which reflects the privilege level of a currently running pro-
gram. Furthermore, to temporarily lower the privilege level of
a user process, each CPU core also stores a 2-bit Requested
Privilege Level (RPL), which can switch privilege level flex-
ibly. When currently running code attempts to access a data
segment, its relevant CPL and RPL are checked against the
DPL of the segment. Fig. 1 shows how the CPL and RPL
are used to determine whether an access to a data segment is
granted. Only when the CPL and RPL are both smaller than
or equal to the DPL, can the corresponding data segment be
accessed.

The x86 architecture defines segment registers [1], [22],
including CS, DS, ES, SS, FS, and GS for memory segmen-
tation, dividing main memory into segments or sections. Each
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Fig. 1. Examples of accessing data segments from different privilege levels.
Red arrows consists of two parts: a solid line which marks the control flow
without segment protection check and a dashed line which marks the control
flow that cannot be executed.

segment register consists of a visible part and a hidden part
(also called shadow register or descriptor cache). The visible
part is to store the logical base of a segment (called segment
selector), and the hidden part is to store a segment descriptor
which stores protection parameters (e.g., segment base and
privilege levels) and cannot be read by programs.

When a program accesses a segment, its corresponding
logical address is referenced as follows. First, as each address
has a 16-bit segment selector and a 32-bit segment offset, the
segment selector is loaded into the visible part of a relevant
segment register. Second, the segment register is used to
look up a corresponding segment descriptor for retrieving the
protection parameters. Last, the aforementioned segment pro-
tection check (see Fig. 1) is performed. If the check succeeds,
the logical address will be translated into its linear address.
To facilitate subsequent accesses, the segment descriptor is
cached into the hidden part of the segment register.

C. Timer Interrupts

In modern operating systems, timer interrupts are triggered
by hardware, allowing OS to activate its kernel at a fixed
time interval. In the x86 architecture, each CPU core is with
an Advanced Programmable Interrupt Controller (APIC) that
manages the timer interrupts. The APIC hardware allows
user to program the number of timer interrupts generated
per second (HZ), which commonly ranges between 100 and
1000 [50]. Thus the time intervals between every two timer
interrupts are commonly at the millisecond level.

Existing timer interrupt based works assume a privileged
user who controls the frequency of timer interrupts, in either
attack or defense scenarios. Specifically, the majority of pre-
vious works [4], [11], [44], [52], [59], [60], [76] assume a
privileged attacker that utilizes timer interrupts to periodically
pause enclave programs [10], enabling precise control of
the execution flow of a victim enclave. As such, they can
carry out various side channel attacks to compromise the
confidentiality of SGX enclave. On the defense side, Schwarz
et al. [51] control the activation of timer interrupts to inject
fake keystrokes, defeating side channel attacks of monitoring
keystrokes.



III. OVERVIEW

In this section, we propose a new interrupt probing tech-
nique without relying on any timer. Built upon this technique,
we further present a fine-grained timer. First, we present
the threat model and assumptions. Second, we show that
the segment protection can be used to probe fine-grained
interrupts. Last, we craft a fine-grained timer via precisely
probing timer interrupts.
Experimental setup: We evaluate SegScope on multiple
machines as shown in Table I, including physical machines and
cloud instances with different CPU models. Unless otherwise
stated, we use the default system configuration.

TABLE I
SYSTEM CONFIGURATIONS.

Machine CPU Kernel OS HZ

Xiaomi Air 13.3 Intel Core i5-8250U 5.15.0 Ubuntu 20.04.5 250
Lenovo Yangtian 4900v Intel Core i7-4790 5.8.0 Ubuntu 20.04.1 250
Lenovo Savior Y9000P Intel Core i9-12900H 5.15.0 Ubuntu 20.04.1 250

Honor Magicbook 16 Pro AMD Ryzen 7 5800H 5.15.0 Ubuntu 20.04.1 250
Amazon t2.large (Xen) Intel Xeon E5-2686 5.15.0 Ubuntu 22.04.1 250

Amazon c5.large (KVM) Intel Xeon 8275CL 5.15.0 Ubuntu 22.04.1 250

A. Threat Model and Assumptions
In our threat model, we assume an unprivileged attacker

who controls a user process with no special privileges. Thus,
the attacker cannot make any modifications to a victim x86-
based system such as disabling Dynamic Voltage and Fre-
quency Scaling (DVFS), and Simultaneous Multithreading
(SMT). We assume the system runs in either virtualized or
bare-metal environment where architectural timers are con-
strained.

To fingerprint websites, a victim user is assumed to use
popular browsers such as Chrome and Tor. To extract cryp-
tographic keys, we assume that an unprivileged attacker can
manipulate the input of the victim cryptographic model. To
steal DNN model architectures, an attacker process and a
victim model inference run in the separate CPU cores con-
currently. To enhance Spectral, a victim program contains one
or more Spectre gadgets. To break KASLR, the victim system
has neither bugs nor vulnerabilities that allow the attacker to
obtain a mapped kernel address.

B. Probing Fine-grained Interrupts
On x86, a global descriptor table (GDT) and a local descrip-

tor table (LDT) are used to store segment descriptors. To detect
access to unused segment registers, the first descriptor in GDT
is reserved by CPUs. When a segment selector to the first entry
(i.e., entry 0) of GDT (called null segment selector) is loaded
into a data segment register (i.e., DS, ES, FS, and GS), it
does not generate any exception. However, if memory access is
performed using the register, it will cause a general-protection
exception. Thus, by initializing data segment registers with
null segment selector, accidental reference to unused segment
registers guarantees an exception.

To prevent a low-privileged program from accessing high-
privileged data segments, when returning to the outer-privilege

Algorithm 1: Segment protection check by x86 CPUs
1 Initially: CS.RPL is the RPL of the CS register, which

represents the privilege level to return.
2 CPL is the current privilege level.
3 Function Protected Mode Return
4 // If return to outer privilege level.
5 if CS.RPL >CPL then
6 foreach Reg ∈ (DS,ES,FS and GS) do
7 // check the descriptor cache of Reg.
8 Des← Reg.Descriptor
9 if Reg.Selector == NULL or

10 (Des.DPL <CPL and Des.Type == Sensitive)
then

11 Reg.selector← 0.
12 end
13 end
14 end
15 return

level, x86 CPUs will check the segment registers and clear
them if they contain high-privileged information. Function
Protected_Mode_Return in Algorithm 1 defines how
x86 CPUs perform the check. When CPUs return to outer
privilege level, CS.RPL is greater than CPL (Line 5). For
each of the 4 registers, its descriptor cache is assigned to Des
(Lines 6-8). Lines 9-12 check if a segment selector satisfies
one of two conditions. If either condition is satisfied, the
selector will be reset to 0. In the first condition, CPUs check if
the selector is a null segment selector (Line 9), which avoids
the segment fault caused by reference to an unused segment
register. If the first check fails, the register is in use. Thus in the
second condition, CPUs access its descriptor cache, retrieve
the protection parameters and check whether it points to a
high-privileged segment (Line 10). If the first check succeeds,
the second condition check is skipped and the null segment
selector will be cleared (Line 11).

However, the null segment selector is not always 0. On x86,
segment selector (Sel) consists of a 2-bit requested privilege
level (RPL), 1-bit table indicator (TI) and 13-bit index. The
index selects one of 8192 descriptors in a descriptor table
(i.e., GDT or LDT). TI is a flag that specifies the descriptor
table to use. If TI equals 0, the selector will use GDT. The
RPL specifies an override privilege level of the selector (as
discussed in Section II-B). For a given selector, if its value
is 0x0000, 0x0001, 0x0002, or 0x0003, it points to the first
entry of GDT, and its value is considered to be null. Thus, for
non-zero segment selector values, they will be cleared when
context switches from kernel space to user space, leaving an
architectural footprint of an interrupt’s occurrence.

We have tested all data segment registers (i.e., FS, DS, ES
and GS) on the tested machine listed in Table I, results of
which show that our SegScope crashes only when modifying
FS, as FS is referenced by some programs such as glibc-based
TLS, causing segment fault. As GS is available since 80386,
it is less used by than DS and ES. In this paper, we pick GS.

We leverage the above mechanism to develop SegScope, a
novel technique that can probe fine-grained interrupts without
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Fig. 2. SegScope exploits the footprints left by segment protection to detect
interrupts and leverages a counter (i.e., SegCnt) to represent the time interval
between two consecutive interrupts.

using any system statistics or timers. SegScope abuses the
aforementioned footprints to detect interrupts and defines a
counter to denote the time interval between two consecutive
interrupts. Fig. 2 shows how SegScope exploits the footprints
to probe interrupts. It has four main steps. First, we define a
counter (coined as SegCnt), and set a data-segment selector
(Sel) as non-zero null segment selector (i.e., 0x0001, 0x0002,
or 0x0003). Second, a loop is defined, inside which we check
the visible part of the segment selector and use SegCnt
to measure the elapsed time. Third, during this period of
time, if an interrupt occurs, current process context switches
from user space (i.e., outer-privilege level) to kernel space.
When the processor returns from an interrupt handler to user
space, it will clear the null segment selector to 0. Last, upon
detecting the selector’s value change, we stop counting and
break the loop. Thus, SegCnt denotes the number of executed
loops, reflecting the elapsed time until an interrupt occurs. By
repeating the above steps, we acquire fine-grained interrupt
observations without relying on any timer.

Please note that after we pre-set a segment register, another
process in the same system might accidentally sets the same
segment register to another valid value rather than being
cleared. In such cases, we still observe the value change of
the monitored segment selector.
Optimizing SegCnt: As mentioned above, SegCnt is decided
by the number of elapsed loops. Given that CPU frequency
affects the number of instructions that can be executed within a
certain time period, it has direct impacts on SegCnt. On top of
that, when an interrupt occurs, preempting SegScope, context
switch occurs and an interrupt handler routine is invoked.
Thus, SegCnt stops self-increment until context switches back
to user space. To this end, we present an equation below to
formulate the relationship among SegCnt, the CPU frequency
Freq and the time cost of an interrupt handler routine w.

SegCnt =
Freq

k
×
⌊
Timeinterrupt −w

⌋
, (1)

where SegCnt is linearly proportional to Freq
k for a given

Fig. 3. SegCnt is linearly proportional to CPU frequency.

Fig. 4. The distribution of time costs (i.e., w) incurred by an interrupt handler
routine. More than 90% of w are between 1 µs and 1.5 µs.

interval in userspace (k is a constant dependent on specific
CPU architectures). Besides, considering that Timeinterrupt
denotes the interval of two consecutive interrupts which is not
all used by processes, we use Timeinterrupt−w to represent the
interval in userspace.

Specifically, modern processors dynamically adjusts its fre-
quency upon its computing workload at runtime [43]. A
higher CPU frequency will increase the speed of executed
instructions, introducing a higher SegCnt. To experimentally
analyze their relationship, we use SegScope to probe 2,000 in-
terrupts at runtime using the Lenovo machine listed in Table I.
In the meantime, SegCnt and CPU frequency are recorded,
generating Fig. 3. Clearly, SegCnt is linearly proportional to
CPU frequency (with a few outliers).

Based on their relationship, we can significantly improve
SegCnt to better reflect the elapsed CPU cycles between two
consecutive interrupts. To retrieve Freq, an unprivileged Linux
user interface (i.e., scaling_cur_freq) is available [13],
[35], [47], [65]. Also, we can decide a good timing (so-called
warm-up) to conduct our side-channel attacks by checking if
the processor frequency is relatively stable.

To time the execution time of an interrupt handler routine
(i.e., w), we develop an eBPF tool following [8], [9]. We run
this tool for about 40 seconds to collect 1,000,000 measure-
ments on the Lenovo Yangtian machine listed in Table I. Please
note that eBPF used here is for analysis only. Fig. 4 shows
the distribution of time costs incurred by an interrupt handler



routine. All the measurements of time costs for an interrupt
handler routine are less than 6 µs and 90.7% are between 1.0
µs and 1.5 µs. Thus, w is at the level of microseconds, and 3
orders of magnitude less than Timeinterrupt that is at the level
of milliseconds, indicating a negligible impact on SegCnt.
Comparing SegScope with existing interrupt probing tech-
niques: While SegScope works in timer-constrained scenarios
where existing interrupt probing techniques do not work,
we compare its performance on detecting/probing interrupts
with that of two representative existing techniques, i.e., high-
resolution timer based probing [51], [58] and loop-counting
based probing [9], [31]2. Please note that SegCnt is used to
capture the time interval of two consecutive interrupts. Thus,
SegScope does not need it in this comparison, and leverages
the aforementioned footprint only.

To reproduce the first probing technique, we follow Schwarz
et al. [51] that invoke rdtsc to observe the timestamp jumps.
Regarding the second probing technique, we follow Lipp
et al. [31] that defines a loop-counting program where an
architectural timer with a resolution of 1ms is used to sample
the self-increment counter at an interval of 5ms. Besides,
the techniques require an empirically-determined threshold to
distinguish timestamp jump and counter plunge, respectively.
To select an appropriate threshold, we follow [9] that uses
eBPF to decide whether a collected timestamp or counter
value is interrupted. As such, we determine a threshold of
1,000 for the high-resolution timer based probing and 274,550
for loop-counting based probing, respectively.

To benchmark their effectiveness in probing interrupts, we
first configure HZ of CPU frequency, ranging from 100 to
1000, indicating the frequency of timer interrupts. We then use
isolcpus to isolate a core for running a probing technique,
with the aim to significantly reduce the noise from system
activities. For each technique, we run it for 10 seconds to probe
enough interrupts and repeat 100 times. As a baseline, 10×HZ
timer interrupts and 3 performance monitoring interrupts are
observed based on eBPF.

TABLE II
A COMPARISON OF SEGSCOPE AND EXISTING TECHNIQUES.

Methods HZ = 100 HZ = 250 HZ = 1000

SegScope 1003.1±0.3 2503.7±0.6 10003.1±0.4
Schwarz et al. [51] 1170.5±51.1 2740.3±62.7 10224.6±52.3

Lipp et al. [31] 1038.8±20.9 2000±0 2000±0

As shown in Table II, SegScope have achieved fine-grained
interrupt probing with a precise number of 10 × HZ + 3
interrupts and a small variance under various settings. For the
high-resolution timer based probing [51], it has much more
false-positives with a significantly larger variance for three
different frequencies. The loop-counting based probing [31]
has a similar problem at the frequency of 100 and is only able
to detect up to 2,000 interrupts at higher frequencies. This is

2Prime+Probe based probing proposed by [51] is not feasible for an
unprivileged attacker.

(a) High-resolution timer based prob-
ing [51]

(b) Loop-counting based probing [31]

Fig. 5. The results of using high-resolution timer based probing [51] and
loop-counting based probing [31] to probe interrupts.

because its sampling period is 5ms with up to 200 interrupts
per second detected.

The reason why SegScope is much accurate than the other
two in probing interrupts is that it reports an interrupt only
when an interrupt caused the footprint. For the other two
techniques, their detection relies on a pre-determined empir-
ical threshold, which varies from machines to machines and
is unreliable. Fig. 5 shows 1,000 interrupted measurements
and 1,000 uninterrupted measurements for each technique.
Clearly, it is impossible to set a threshold that can distinguish
interrupted timestamp values or counter values.

Besides, as SegScope can precisely detect the interrupts that
occur outside of its execution period via the footprint, it can be
used to enhance other non-interrupt side channels. Specifically,
before a non-interrupt side channel measurement, we set a
segment register. After that, we perform the value check of the
register. As such, we can determine whether the measurement
is interrupted. If so, it will be filtered out. As the two previous
techniques require continuous execution, they have not been
demonstrated to reduce the impact of interrupts for other side
channels.

C. SegScope-based Timer

Timer interrupts are critical hardware resources for OS
kernel to schedule processes. As the time interval between
two consecutive timer interrupts is fixed, they can be used as
clock edges to build a clock interpolation scheme [53]. To
construct such clock edges, we must filter timer interrupts.

To this end, we quantitatively analyze the impact of different
types of interrupt on SegCnt. Specifically, an eBPF tool is
developed to map collected SegCnt to an interrupt type. The
analysis is performed on the Lenovo Yangtian machine listed
in Table I. Our experimental results show that the top 3 probed
interrupts are timer interrupts (994,748 corresponding SegCnt
are obtained), rescheduling interrupts (962 corresponding
SegCnt are obtained), and performance monitoring interrupts
(872 corresponding SegCnt are obtained). Fig. 6 shows the
statistical distribution of SegCnt corresponding to each type
of interrupts. Particularly, different types of interrupts present
distinguishable statistical characteristics regarding SegCnt. For
example, SegCnt corresponding to timer interrupts is concen-
trated, as timer interrupts are activated at fixed time intervals.
Thus, we pick a statistical method (i.e., Z-score) to retain
SegCnt that correspond to timer interrupts.



Fig. 6. The impact of specific interrupts on SegCnt. There is a significant
statistical difference between timer interrupts and other interrupts.

With this key observation, we have three steps to build
SegScope-based timer. First, we leverage SegScope to pre-
cisely probe interrupts. Second, we build a clock interpolation
scheme by incrementing SegCnt between two consecutive
interrupts. Last, we retain those SegCnt corresponding to timer
interrupts by applying a simple statistical method (i.e., Z-
score). Eq. 2 shows how Z-score represents how many standard
deviations from the average a measurement is. In this paper,
we filter out outliers for which Z-score are not within the range
[-2,2].

Z-score(X) =
X−µ

δ
(2)

where µ is the average and δ is the standard deviation. X is
a measurement (i.e., SegCnt in our technique).

To construct the clock interpolation scheme, we define
a loop-counting program in our timer. Specifically, in one
loop, SegCnt is self-incrementing. When a timer interrupt is
probed, the loop stops and current SegCnt is initialized to
0. Subsequently, another same loop starts and stops until a
subsequent timer interrupt comes. Thus, the second SegCnt
denotes the time between two consecutive timer interrupts. As
the time interval between two consecutive timer interrupts is
fixed, SegScope can time the other piece of code that shares
the time interval.

Fig. 7 illustrates how the SegScope-based timer is used to
measure the execution time of attacker-controlled code. Two
pieces of code share a fixed time interval termed as T . One
piece is attacker-controlled code (e.g., a code snippet that
accesses a kernel address in breaking KASLR) that needs
to be timed. The other piece is SegScope-based timer. When
our timer statistically probes a timer interrupt and stops at t1,
the attacker-controlled code starts to execute and finishes at
ta. Thus, SegScope-based timer continues until a subsequent
timer interrupt comes at t2. Thus, the time that the attacker-
controlled code takes is derived from the fixed time interval
and the time SegScope takes from ta to t2.
Comparing SegScope-based timer with existing timers:
Lipp et al. utilize a counting thread as a high-resolution timing
source [32]. Particularly, a dedicated thread self-increments
a global counter, which is read as timestamps. Based on
their work, Schwarz et al. [55] propose an optimized asm
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M
Time  (ti+1-ti = T)
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. . .
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Fig. 7. An illustration of using SegScope-based timer to measure the execution
time of attacker-controlled code.

version. We compare SegScope-based timer with the optimized
counting thread [55] regarding their timer granularity and
stability. Specifically, granularity refers to the cost of CPU
cycles for one increment of a counter (either the counting-
thread based counter or SegCnt). The stability is the degree to
which each method is affected by system noise.

We follow [55] to reproduce the optimized counting thread.
To achieve better stability, we pin the counting thread and the
monitored code on different logical cores of the same physical
core for execution.

To evaluate the granularity of the two timers, we apply
SegScope to probe 10,000 consecutive interrupts for the
test machines in Table III and use SegScope-based timer
and counting thread to time the interval of two consecutive
interrupts. First, when an interrupt is probed, we acquire
its corresponding SegCnt and the counter value of counting
thread, respectively. As a baseline, a high-resolution timer
(i.e., rdtsc on Intel-based CPUs and rdpru on AMD-
based CPUs [30]) is used to measure the elapsed CPU cy-
cles. Second, Using distinguishable statistical characteristics of
timer interrupts against SegCnt, we apply Z-score to filter out
outliers and retain SegCnt corresponding to timer interrupts.
Last, we measure the ratio of SegCnt or counting-thread based
counter to CPU cycles as the granularity.

To evaluate their stability, we use each timer to measure a
fixed time of 1 million CPU clock cycles. First, we implement
two pieces of code: attacker-controlled code and timing code.
The attacker-controlled code loops to use a high-resolution
timer to read the timestamp counter and breaks when it
increases by more than 1 million. The timing code uses
either our timer or counting thread to repeatedly measure
the execution time of the attacker-controlled code, and finally
obtain 10,000 measurements for each. Second, we use Z-
score to filter out outliers for both the two timers. Third, we
compute the standard deviation (std) of either timer as their
stability. Last, for a fair comparison, the computed standard
deviations are multiplied by their corresponding granularity
and converted to CPU cycles.

As shown in Table III, SegScope-based timer achieves one
increment every 1.29 cycles on average, at the same granularity
level of rdtsc, rdpru, and the optimized counting thread.
Besides, the stability of the SegScope-based timer is at the
same order of magnitude as the optimized counting thread.
Both are less stable than rdtsc and rdpru.

Combing the granularity and stability, our timer’s resolution



TABLE III
A COMPARISON OF SEGSCOPE-BASED TIMER AND COUNTING

THREAD [55] TO NATIVE TIMESTAMP COUNTER AS THE BASELINE.
SEGSCOPE HAS THE SAME ORDER OF MAGNITUDE WITH COUNTING

THREAD.

SegScope Counting thread rdtsc / rdpru
(optimized asm) (Baseline)

Xiaomi Air 13.3 Granularity 0.93 0.54 1
Std (Cycles) 1675.9 44.2 4.9

Lenovo Yangtian 4900v Granularity 1.56 0.93 1
Std (Cycles) 4577.9 2408.7 6.8

Honor Magicbook 16 Pro Granularity 1.02 1.06 1
Std (Cycles) 5109.8 3721.4 27.7

Amazon t2.large Granularity 1.48 0.86 1
Std (Cycles) 5585.8 18962.6 8.5

Amazon c5.large Granularity 1.47 0.84 1
Std (Cycles) 3106.4 10678.1 2.4

Average Granularity 1.29 0.85 1
Std (Cycles) 4011.2 7163.0 10.1

is at the level of thousands of CPU cycles. To further validate
its resolution, we perform a Flush+Reload based Spectre attack
in Section IV-F, which amplifies the timing difference to about
4000 CPU cycles, resulting in a secret-string leakage with a
success rate of 100%.

IV. CASE STUDIES

In this section, we demonstrate how SegScope can be
leveraged to mount end-to-end side channel attacks, including
fingerprinting websites, extracting cryptographic keys, stealing
DNN model architectures, enhancing Spectral attack, and
breaking KASLR.

A. Fingerprinting Websites

A user’s website visit history is sensitive, which shows
personal interests, economic situation, political views, etc.
Existing work [7], [9], [56], [67], [78] demonstrates that an
unprivileged attacker can use various side channel techniques
to fingerprint websites that have been visited. In this section,
we show how SegScope can be used for website fingerprinting.

Specifically, as different websites can trigger different net-
work and graphics activities, inducing featured device inter-
rupts. These website-induced interrupts can be exploited for
performing website fingerprinting attack [9]. Relying on this
observation, an attacker can use SegScope to probe a certain
number of interrupts, resulting in a time-series trace of probed
interrupts.

Aligned with existing work [7], [9], [13], [56], [67], [78],
we assume that the attacker leverages deep neural networks
(DNNs) as classifiers to fingerprint websites. Specifically, in
the offline phase, we use SegScope to collect enough interrupt
traces incurred by website visiting for model training. In the
online phase, we use the well-trained model to predict the
website that has been visited. As presumed in [13], [24],
[29], [78], the attacker puts her malicious code in the victim’s
computer, so she can access local system resources.
Experimental setup: We carry out our experiments on the
Xiaomi machine listed in Table I, using both Chrome and Tor
Browser. For the default setting, we use taskset to pin the

TABLE IV
CLASSIFICATION ACCURACY (AVG±STD) ACROSS 10-FOLD CROSS

VALIDATION FOR WEBSITE FINGERPRINTING.

Setting Chrome 109 Tor Browser 12

Top-1 Acc Top-5 Acc Top-1 Acc Top-5 Acc

Default 92.4%±0.4 98.4%±0.2 87.4%±1.4 97.3%±0.4
Different cores used 91.0%±0.8 98.1%±0.4 83.3%±1.4 96.3%±0.2

Frequency scaling disabled 94.6%±0.5 98.9%±0.3 87.4%±0.9 96.5%±0.3
Hyper-threading disabled 94.5%±0.7 98.8%±0.3 89.5%±0.8 97.2%±0.3

malicious process and browser process to the same logical
core. Moreover, to test the robustness of our method, we also
test our method in other settings including pinning the two
tasks to different logical cores, disabling frequency scaling,
and disabling hyper-threading. In the different cores setting,
we pin the attacker process to one logical core 1 and the victim
browser to logical core 2 to avoid scheduling contention. In
the disabling frequency scaling setting, we use the Linux
command cpufreq-set to fix the CPU frequency at 2.5
GHz.

Since Amazon has shut down Alexa ranking site3, we use
the same website list as [9], which has 100 websites. However,
some of them have been shut down or changed domain names,
so we finally use 95 of the 100 websites. For each setting,
we record 100 traces for each of the 95 websites in Chrome
and Tor Browser. For each trace, we use SegScope to sample
5000 SegCnt successively. To mirror typical use behavior, the
browser’s cache is not cleared before accessing each website.

We feed the collected SegCnt traces without any preprocess-
ing into Long Short-Term Memory (LSTM) model consisting
of 32 units4 . First, we split the traces into 10 folds and select
one fold as test set. Then, the remaining traces are split into
a training set with 81% of all the traces and a validation set
with 9% of all the traces. We repeat this procedure for each
fold and compute the average accuracy across the 10 folds as
the final accuracy.
Experimental results: The accuracy of our LSTM classifier
is shown in Table IV. In the default setting, our attack’s top-
1 accuracy on Chrome is 92.4%, and the top-5 accuracy (an
attacker uses no more than five guesses to find a website that
is actually visited) is 98.4%. While Tor Browser introduces
a strong security mechanism against side channel attacks, the
top-1 accuracy of our attack is 87.4% and the top-5 accuracy is
97.3%, much higher than random guess of 1%. Moreover, the
accuracy is above 80% in all settings, which validates that our
method can be used to construct information-rich time-series
traces in various settings.

B. Extracting Cryptographic Keys

In this case study, we show that an unprivileged attacker
can steal cryptographic keys by using SegScope to probe inter-
rupts. Specifically, the attacker uses SegScope rather than ar-

3https://www/alexa.com/topsites
4The LSTM (32 units, sigmoid activation) model can be found at

https://github.com/jackcook/bigger-fish. We use the same model and hyper-
parameters as [9], [56].



chitectural timer to construct a loop-counting program, which
is affected by CPU frequency (as mentioned in Section III-B).
We use SegScope to repeatedly probe every interrupts and
sample a self-incremented SegCnt when each interrupt comes.
After each sample, the SegCnt will be set to 0 and increment
itself until the next interrupt comes.

Wang et al. [64] has shown that a timer-based loop-counting
program can be used to mount realistic frequency side channel
attack (i.e., pixel stealing). However, they rely on an archi-
tectural timer and can be easily defeated by adding noise to
the timer. As discussed in Section III-B, when the interrupts
are activated regularly (e.g., timer interrupts), incrementing
speed of SegCnt will be proportional to the CPU frequency.
We can use SegScope to obtain frequency information from an
unprivileged process, without access to the cpufreq interface
or any architectural timer.

We verify that the workload can effect our SegCnt. Aligned
with [65], we use SegScope to attack the CIRCL which spawns
300 concurrent goroutines and uses 10 randomly generated
378-bit keys. For each target bit i in a secret key m, if
mi ̸= mi−1, the crafted challenge ciphertext will trigger an
anomalous 0 value. If mi = mi−1, there will be no challenge
ciphertext that can trigger the anomalous 0 value. We conduct
our ciphertext attack on our Lenovo Yangtian machine. Fig. 8
shows the distribution of SegCnt when the challenge ciphertext
introduces an anomalous 0 or not. A correct key-bit guess
causes the processor to execute at a higher frequency than an
incorrect key-bit guess does, resulting in higher SegCnt. Once
we have the ability to distinguish if mi ̸= mi−1, we can group
the bits. Finally, we only need to guess whether the first bit is
0 or 1 to extract all the bits (the search space is significantly
reduced to 2).

Fig. 8. Distribution of SegCnt when the challenge ciphertext introduces an
anomalous 0 (mi ̸= mi−1) or not (mi = mi−1).

C. Stealing DNN Model Architectures

To design an effective DNN model, developers need to
spend significant time and energy in searching and fine-tuning
model architectures. The optimized model structures are al-
ways considered as confidential and high-value property [41],
[66], [69], [73], [74]. Furthermore, a known DNN architecture
can also help to mount adversarial transfer attacks [37], [46],
in which the attacker requires a substitute model to generate
their adversarial examples. Their attack success rate depends

on the similarity between the victim model and the substitute
model. To this end, previous work has exploited various
side channels to steal DNN model architectures, such as EM
signal [41], computer bus [20], [79], cache side channel [70],
and Rowhammer [48].

Aligned with previous work [20], [41], [48], [70], [79], our
attack has two phases: an offline preparation phase and an
online classification phase. We assume that the victim runs
a DNN model to inference and the attacker uses SegScope
to perform her attack. In the offline preparation phase, we
collect enough SegCnt traces to build a series of well-
trained classifiers, which can translate a SegCnt trace to its
corresponding layer types. In the online classification phase,
we query a black-box target model running on the victim
machine to trigger its model inference and use a SegScope
process to collect SegCnt traces. Then we use the offline-
trained classifiers to recover the model structure.
Experimental setup: We carry out our experiments in our
Lenovo Yangtian machine. The victim model uses PyTorch
1.13.0 with Python version 3.9.13 as its underlying deep
learning framework. The attacker process and the victim
process run on separate physical cores. We consider 2,000
network structures for training and 500 network structures
for test, including various model architecture families (e.g.,
AlexNet, VGG, and random architectures). The input size
used by these models is assumed as 3×224×224. The
batch size is selected from [32,64,96]. 5 We embed the
torch.autograd.profiler into each DNN model to
automate the annotation.

We use an optimized BiLSTM as classifier to segment the
SegCnt trace corresponding to different layers of an accurate
model layer sequence. The classifier6 is trained in a machine
with an NVIDIA GeForce RTX 3090 GPU (24 GB video
memory), Intel i9-10920X CPU (24 logical cores) and 128
GB DRAM memory. The deep learning framework used here
is PyTorch 2.0.1 with Python version 3.8.13. Aligned with
previous work [41], we use two metrics to evaluate the
structure recovering performance, i.e., Levenshtein Distance
Accuracy (LDA) and Segment Accuracy (SA). LDA represents
the similarity between a predicted structure and a ground-truth
structure. SA represents the percentage of sampling points that
are correctly predicted into their ground-truth layer types.
Experimental results: As shown in Fig. V, LDA for all the
layer types is about 87.2%. The layers that require intensive
computation achieve better SA than those layers with less
intensive computation because the latter has a smaller number
of sampling points. The sampling frequency is dependent on
the frequency of timer interrupts, which is 250 by default, so
we believe that our attack can perform better in systems with
larger HZ (e.g., 1000).

5The batch size is constrained by the heat generated by the model inference
which will cause a huge number of thermal event interrupts to noise our attack.
We decrease the maximum batch size to control the heat when the model size
is increasing. Exploring the security implications of thermal event interrupts
is left as future work.

6The classifiers can be found at https://github.com/LearningMaker/DeepTheft.



TABLE V
CLASSIFICATION ACCURACY OF NETWORK STEPS (BN = BATCH
NORMALIZE, MP = MAX POOLING, AP = AVERAGE POOLING).

Layer Conv BN ReLu MP AP Linear Overall
SA (%) 98.2 77.8 58.6 85.2 50.4 52.8 97.7
LDA (%) 87.7 86.0 85.6 85.6 86.5 86.9 87.2

TABLE VI
THE ARCHITECTURAL STATES WHEN DIFFERENT MICROARCHITECTURAL

EVENTS OCCUR.

Microarchitectural events Architectural states

EFLAGS.CF Selected data segment register

Timeout 1 1
Cacheline writes 0 1

Interrupts 0 0

D. Enhancing Spectral Attack

Spectral (Spectre with architectural leakage) attack [77]
exploits the new ISA extension (i.e. umonitor and umwait)
introduced by Intel to resurrect Spectre attack in a timer-
constrained scenario. To achieve this, an unprivileged attacker
needs to control two processes that run on separate cores
and share a cache line. The monitoring process executes the
umonitor instruction with the cache line as the target and
executes umwait to enter a light-weight sleep mode. The
other process mistrains the branch predictor and make CPU
load the value with a secret offset into cache.

As shown in Table VI, there are three reasons for waking up
the monitoring process. If the monitored process sleeps until
the maximum sleep time is reached (default is 100,000 cycles),
the carry flag will be set (EFLAGS.CF = 1). Otherwise, the
carry flag will be cleared (EFLAGS.CF = 0). However, the
original Spectral attacker cannot distinguish cache line writes
and interrupts because both the two architectural events clear
the carry flag. Even in an idle system without extra interrupts
caused by applications, the interrupts are still considered to
be an unavoidable noise for original Spectral attack, causing
a bit error rate of nearly 1%.

In this case study, we show that a Spectral attacker can use
SegScope to filter out the interrupted measurements, thereby
enhancing his attack. Specifically, the attacker sets the segment
register as a non-zero null value (e.g., 0x1) at the monitoring
core and then executes the Spectre attack. After the monitoring
process is awakened, the attacker checks the segment register
and EFLAGS.CF at the same time. If the preset segment
register is cleared, she can conclude that the monitored process
is awakened by an interrupt rather than a cache line write.
Experimental setup: We use a simple bit-wise Spectre
gadget [2], [19], [38], [54], [77] to implement Spectral attack.
We evaluate our enhanced Spectral on the Lenovo Savior
machine. The victim code containing a Spectral gadget runs on
different physical cores with the monitoring code. We follow
the mistraining strategy used by Zhang et al. [28], [77], which
provides 5 in-bound indices for every out-of-bound index. To

increase the chance of inducing mis-speculation, we call the
gadget 12 times for every bit to leak.
Experimental results: With the default mwait timeout of
100,000 cycles, our enhanced Spectral achieves an average
leakage rate of 53,114 bit/s with a 0.01% error rate, while the
original Spectral achieves an average leakage rate of 53,889
bit/s with 0.56% error rate. Figure 9 shows the error rate for
different umwait timeouts from 20,000 to 200,000 cycles.
Even in an idle system, where there are almost no interrupts
actively triggered by processes, the interrupt noise still causes
an error rate of up to 1%. However, SegScope can be used to
distinguish and filter out the interrupt-induced error bits.

Fig. 9. Error rate w.r.t. timeouts. SegScope can remove the impacts of
interrupts and significantly reduce the error rate of Spectral.

E. Breaking KASLR

Kernel address-space layout randomization (KASLR) is a
defense mechanism against memory corruption exploits, which
randomizes the base address of text segment at every boot
time. In Linux, the text segment is mapped to an address
range of 1GB size and aligned with 2MB, so there are 512
possible base addresses [5], [6]. Prior work [18], [21], [30]
has shown that there is a timing difference when accessing
or executing prefetch instructions on a memory address de-
pending on whether that address is mapped or not. Recently,
without reliance on architectural timers, some studies utilize
their side channels, such as temperature [26], power [34], and
CPU frequency [65], to distinguish between mapped address
and unmapped address. The idea of breaking KASLR using
SegScope is to build a SegScope-based stealthy timer to
measure the execution time of attacker’s operations, obviating
usage of architectural timer.

For the attack, we repeatedly access or prefetch the first
byte of each of the possible base addresses for the kernel text
segment and use SegScope to measure its execution time [18],
[21]. When using the memory access method, we register
a segment fault handler in the userspace to handle segment
faults, avoiding process crashes [21]. We run our measurement
on the 512 possible addresses. Finally, to distinguish the access
or prefetch instructions to mapped addresses from access
or prefetch instructions to unmapped addresses, we use
SegScope to measure the execution time of these operations.
Experimental setup: There are two configurable parameters
in our prototype: a loop number (K) before each timing and
a timing number (C) for each possible address. Specifically,



before each timing, we access or prefetch data from a possible
address K times first. After that, we use SegScope to measure
the overall execution time. The the above steps are repeated
C times for each possible address. We note that timing side
channel attacks always require multiple sampling to obtain a
stable result.

We first investigate the ground truth when executing mem-
ory accesses and prefetch instructions for a mapped ad-
dress and unmapped address separately on the Xiaomi Air 13.3
machine. Second, we directly access each possible address and
use various timers to distinguish the mapped address from
unmapped addresses on our Lenovo Yangtian machine for
1000 trials. Last, we evaluate the success rate when executing
prefetch instructions to access each possible address on
four tested machines listed in Table I for 1000 trials.

(a) K=1 (b) K=1000

Fig. 10. The impact of K on SegCnt when accessing a mapped or unmapped
kernel address (segment faults that will be incurred are dealt with by a pre-
defined userspace handler).

(a) K=1 (b) K=100,000

Fig. 11. The impact of K on SegCnt when accessing a mapped or unmapped
kernel address via prefetch (no segment faults will be incurred).

Experimental results: Fig. 10 shows the difference of SegCnt
when performing 1 and 1000 continuous memory accesses for
each timing. It can be seen that the attacker can amplify the
timing difference by performing multiple memory accesses
continuously and using the sum of their execution time to
distinguish the mapped address. We also use prefetch
instruction to repeat the steps above. As shown in Fig. 11,
attacker can distinguish the prefetch instructions to mapped
address from the prefetch instructions to unmapped address
with a proper K.

As shown in Table VII, it is hard for the architectural timer
with a granularity of 1 ms and counting thread to distin-
guish the timing differences between mapped and unmapped
addresses. Compared with our timer without any denoising

technique, the three denoised SegScope-based timers are much
more effective and achieve high success rate when we repeat-
edly attack 10 times (C = 10).

Table VIII shows the results of using prefetch to break
KASLR on various environments. SegScope successfully de-
randomizes KASLR with 100% accuracy within only approx-
imately 10 seconds.

TABLE VII
COMPARISONS OF USING VARIOUS TIMERS TO BREAK KASLR WHEN

DIRECTLY ACCESSING THE POSSIBLE ADDRESSES. PLEASE NOTE THAT
THESE ARCHITECTURAL TIMERS ARE UNAVAILABLE IN OUR THREAT

MODEL.

Timer Param. C Time (s) Top-1 Acc Top-5 Acc

Our timer without any denoising 1 2.06 2.7% 96.1%
10 20.41 0.3% 1.3%

Our timer with Z-score (default) 1 2.05 1.5% 96.9%
10 20.33 99.6% 99.8%

Our timer with frequency 1 2.05 71.1% 89.8%
10 20.43 83.7% 92.4%

Our timer with
Z-score and frequency

1 2.06 71.9% 88.6%
10 20.31 100% 100%

Counting thread [32], [55] 1 1.27 0.3% 1.3%
10 12.61 0.3% 0.9%

Architectural high-resolution timer
(i.e., rdtsc)

1 1.27 96.9% 97.6%
10 12.56 93.8% 94.9%

Architectural timer (1us) 1 1.26 97.2% 98.2%
10 12.50 93.8% 94.1%

Architectural timer (1ms) 1 1.27 0 0
10 12.64 0 0

TABLE VIII
EVALUATION OF USING SEGSCOPE TO BREAK KASLR ON VARIOUS

ENVIRONMENTS.

Machine Param. C Time (s) Top-1 Acc Top-5 Acc

Xiaomi Air 13.3 1 2.14 63.7% 98.4%
5 10.28 100% 100%

Lenovo Yangtian 4900v 1 2.05 96.1% 100%
5 10.24 100% 100%

Amazon t2.large 1 2.05 83.0% 99.7%
5 10.21 100% 100%

Amazon c5.large 1 2.06 87.2% 99.2%
5 10.31 100% 100%

F. Leaking Memory with Spectre
Spectre is a CPU vulnerability that allows an attacker to

cross memory boundary and read any target secrets in mem-
ory [27]. As there are multiple Spectre variants, we choose
the Spectre-V1 of bounds check bypass in this evaluation.

Specifically, it has a bounds-check gadget, which has condi-
tional branch instructions to check if an array-index candidate
is within a valid range. We first feed the gadget with multiple
legal array indexes to mistrain a branch predictor. After that,
an out-of-bound index is fed to the gadget, bypassing the
bounds check and performing a speculative memory access.
The access loads an attacker-chosen secret from memory into
cache, which is leaked by previous side channel techniques
such as Flush+Reload [71] with an architectural timer.
Experimental Setup: To validate the resolution of SegScope-
based timer, we use it to replace the architectural timer in



Flush+Reload. As one byte has 256 possible values, only the
value loaded speculatively into cache is the secret and thus has
shorter access latency, resulting in higher SegCnt. For other
values, they have lower SegCnt. When performing one round
of Flush+Reload to infer a secret, we use a number of same
gadgets rather than 1 to amplify the timing difference between
cache hits of the secret value and cache misses of other 255
values. When the number of gadgets reaches 200, the timing
difference is amplified to about 4,000 CPU cycles and our
timer can be effectively used to infer the secret. The attack is
performed in the Xiaomi machine listed in Table I.

Fig. 12. Reading out arbitrary address in application memory. The candidate
byte value with the highest SegCnt is the one stored at the given offset.

Experimental Results: We have successfully leaked a secret
string of 1000 characters with a success rate of 100% and a
leakage rate of 0.15 B/s on average. Taking secret ‘S’ as an
example, Fig. 12 shows possible candidate values with their
corresponding access latency, denoted by SegCnt. Clearly, ‘S’
is the secret as it has the highest SegCnt and all other candidate
values have lower SegCnt.

V. DISCUSSION

Other security implications of SegScope: With fine-grained
interrupt probing, SegScope can be used to perform other
interrupt side channels, such as monitoring keystrokes [31],
[51], [58] and inferring PDF document contents [39]. As
SegCnt is consistent with CPU frequency, SegScope can also
be used to demonstrate other frequency-based attacks such
as building covert channels [47], [65] and extracting AES-
NI keys [35]. Besides, SegScope can be used to improve the
performance of micro-benchmark programs. Particularly, if a
well-defined benchmark program is interrupted, its measured
execution time will not be accurate. As such, SegScope can
significantly filter out the interrupted measurements, similar to
the enhanced Spectral attack.
Modifying OS kernel/x86 CPU architecture to mitigate
SegScope: Section III-B discusses that SegScope exploits
segment protection check to clear non-zero null segment
selectors when transitioning from kernelspace to userspace.
The check is enforced by x86 CPUs via intended instructions,
e.g., IRET. The recent Linux kernels do not save and restore
DS, ES, and FS, but support GS via SWAPGS. However, GS
is still cleared when the context returns to userspace. Thus, if
kernel is modified to save and restore DS, ES, and FS, they
will still be cleared by the CPU when the context switches to
userspace, rendering the kernel-based mitigation ineffective.

A potential strategy of mitigating SegScope is to keep the
values of the segment registers unchanged in future architec-
tures, which however introduces a new covert channel: one
process manipulates the values of the segment registers to
transfer data, while another process, running on the same log-
ical core, monitors the changes in the register values. Another
possible mitigation is a hardware-software co-design: when
context switch occurs, OS kernels save and restore the segment
registers for every process, and CPUs preserve the non-zero
segment selectors as-is. However, this mitigation is unable
to protect legacy hardware, and needs cooperation between
x86 processor and OS vendors. Also, the updates to kernels
introduce additional overhead during context switching.

Restricting/monitoring access to segment registers: As
SegScope leverages access to data segment registers to probe
interrupts, restricting the access to root users can be effective.
However, this restriction is likely to badly affect benign
programs that need to access these registers. Alternatively,
MASCAT [23] can be extended to detect SegScope in a
binary check, as SegScope requires frequent accesses to certain
segment registers. However, the attacks may be encapsulated
and concealed to bypass the detection, e.g., via Intel SGX,
known as SGX malware [55]. Besides, frequent setting of
a segment register is not always needed. In our enhanced
Spectral attack, for one side-channel measurement, SegScope
is used twice to check whether it is noised by interrupts.

Mitigating SegScope-based timer: As our crafted timer
relies on the fixed time interval between two consecutive timer
interrupts, a possible mitigation is to dynamically change the
interval between consecutive timer interrupts. This requires
modifying the process scheduler and recompiling the OS
kernel. Another solutions is to enable tickless mode. In this
mode, no timer interrupts will be activated and sent to CPU
cores that are idle or have a single running process, as no
process switch is needed. Thus, when our timer is scheduled
to run on these cores, it will be mitigated. However, we can
render this mode ineffective by co-locating SegScope with a
computing-intensive process in the same logic core.

Limitations of SegScope-based timer: As discussed in Sec-
tion III-B, SegScope-based timer is badly affected by system
noise, including CPU frequency and kernel routine. While
the timer achieves the same granularity as the high-resolution
timer such as rdtsc, it is much less stable, rendering its
resolution lower (at the level of thousands of CPU cycles).
Besides, when the execution time of the attacker-controlled
code is longer than the time interval between two consecutive
timer interrupts, our timer can only acquire the remainder from
the execution time modulus the fixed time interval. Fortunately,
this is still sufficient for our timer-based attacks, because the
remainders can distinguish the access to mapped addresses
from unmapped addresses in breaking KASLR, and cache hits
from cache misses in performing Spectre. Our timer does not
work for an attack that happens to have the same remainders
for different cases of measurements, which is unlikely to occur.



VI. CONCLUSION

In this paper, we introduce SegScope, a new technique that
abuses segment protection on x86 to acquire fine-grained in-
terrupt observations without relying on any timer. To show its
security implications, SegScope has been used to demonstrate
different case studies without any timers, such as inferring
website visits, extracting cryptographic keys, stealing DNN
model architectures, and enhancing Spectral attack. Com-
pared with existing timer-based interrupt-probing techniques,
SegScope is fine-grained without introducing false-positives.
Besides, we rely on SegScope to craft a fine-grained timer,
as regular timer interrupts as clock edges contain timestamps.
The granularity of our crafted timer is at the same order of
gratitude as the high-resolution architectural timer, i.e., rdtsc
on Intel-based CPUs and rdpru on AMD-based CPUs. To
demonstrate the viability of the crafted timer, we replace the
architectural timer with our timer to mount realistic timing
side channel attacks. Experimental results show that KASLR
is cracked within about 10 seconds and Flush+Reload based
Spectre attack is successfully performed.
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APPENDIX

A. Abstract

As discussed in the paper, we proposed SegScope, a
new technique that abuses segment protection on x86 to
acquire fine-grained interrupt observations without relying on
any timer. To reveal its security implications, we leverage
SegScope to mount different attacks. First, SegScope, as a side
channel, is used to fingerprint websites, extract DNN model
architectures, and steal cryptographic keys. Second, SegScope
has enhanced existing non-interrupt side channel attacks (e.g.,
Spectral attack). Last, SegScope has been leveraged to craft a
fine-grained timer, which serves for KASLR de-randomization
and Spectre, respectively. In this artifact, we choose website
fingerprinting (SegScope serves as an interrupt side chan-
nel), enhanced spectral attack, and KASLR de-randomization
(SegScope serves for a timing side channel).

B. Artifact check-list (meta-information)
• Experiments:

We describe three attacks, i.e., fingerprinting websites, enhanc-
ing Spectral attack, and breaking KASLR.

• How much disk space is required (approximately)?:
About 100 MB.

• Publicly available?:
The code of three aforementioned attacks is publicly available.
The other code of this paper is available upon request.

• Code licenses (if publicly available)?:
General Public License v3.0.

C. Description

1) How to access: The source code is available here: https:
//doi.org/10.6084/m9.figshare.24658953.v1.

2) Hardware dependencies: As segment protection is sup-
ported by x86 processors, SegScope is expected to work on
all x86 CPUs. We have validated SegScope on multiple x86
CPUs (i.e., Intel Core i5-8250U, Intel Core i7-4790, Intel
Core i9-12900H, and AMD Ryzen 7 5800H). To demon-
strate an enhanced Spectral attack, recent CPUs supporting
UMWAIT/UMONITOR instructions are required such as Intel
Core i9-12900H in our paper.

3) Software dependencies: We recommend Ubuntu 20.04.5
with Linux kernel 5.15 by default. In this environment, build
tools (i.e., gcc, make) and Python 3 are needed.
D. Major Claims

1) C1: SegScope can probe fine-grained interrupts without
relying on any timer. We successfully leverage it to perform an
interrupt side channel attack by fingerprinting which website
a user has opened.

2) C2: As SegScope can distinguish side channel mea-
surements that have been interrupted, it effectively reduces
the noise of interrupts on other non-interrupt side channels.
Taking the Spectral side channel as an example, SegScope
has removed the impacts of interrupts and significantly reduce
its error rate.

3) C3: We apply SegScope to build a fine-grained timer,
which achieves the same level of timing granularity as the
high-resolution timer, i.e., rdtsc and rdpru. Based on the
timer, we successfully break KASLR within about 10 seconds.

E. Experiments

1) E1: Fingerprinting websites

How to: We apply SegScope to probe the website-induced
interrupts while opening a website.

Results: As shown in the Table IV in the paper, SegScope
has inferred website visits with a high success rate (92.4% on
Chrome and 87.4% on Tor Browser in our tested machine).

2) E2: Enhancing Spectral

How to: As the Spectral side channel attack is noised by
interrupts, we exploit SegScope to effectively filter the noised
measurements and discard them.

Results: As shown in Figure 9 in the paper, SegScope
removes the impacts of interrupts and significantly reduces
the error rate of Spectral by 56×.

3) E3: Breaking KASLR

How to: We leverage SegScope to craft a fine-grained
timer, as timer interrupts can be used as clock edges to
build a clock interpolation scheme. We further use the crafted
SegScope-based timer to measure the timing difference when
accessing/prefetching a mapped/unmapped memory address.

Results: As shown in Table III in the paper, SegScope-based
timer achieves the same level of timing granularity as the high-
resolution timers, i.e., rdtsc and rdpru. With this timer-
enabled timing side channel, KASLR has been derandomized
within about 10 seconds as shown in Table VII in the paper.

Notes: If SegScope-based timer does not work well, please
check the grub configuration and ensure that it does not
enable the tickless-full mode. This mode is disabled on Ubuntu
systems by default.

https://doi.org/10.6084/m9.figshare.24658953.v1
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	Introduction
	Background and Related Work
	Timer-based Interrupt Probing Techniques
	Segment Protection in x86
	Timer Interrupts

	Overview
	Threat Model and Assumptions
	Probing Fine-grained Interrupts
	SegScope-based Timer

	Case Studies
	Fingerprinting Websites
	Extracting Cryptographic Keys
	Stealing DNN Model Architectures
	Enhancing Spectral Attack
	Breaking KASLR
	Leaking Memory with Spectre

	Discussion
	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Major Claims
	C1
	C2
	C3

	Experiments
	E1
	E2
	E3



