
ThermalScope: A Practical Interrupt Side Channel Attack Based
On Thermal Event Interrupts

Xin Zhang12†, Zhi Zhang3†, Qingni Shen12∗, Wenhao Wang4, Yansong Gao5,
Zhuoxi Yang12, Zhonghai Wu1

1School of Software and Microelectronics, Peking University,
2PKU-OCTA Laboratory for Blockchain and Privacy Computing, Peking University,

3The University of Western Australia, 4Institute of Information Engineering, CAS, 5Data61, CSIRO
Email: zhangxin00@stu.pku.edu.cn, zhi.zhang@uwa.edu.au, qingnishen@ss.pku.edu.cn, wangwenhao@iie.ac.cn,

gao.yansong@hotmail.com, yangzx@stu.pku.edu.cn, wuzh@pku.edu.cn

ABSTRACT
While interrupts play a critical role in modern OSes, they have been
exploited as a wide range of side channel attacks to break system
confidentiality, such as keystroke interrupts, graphic interrupts
and network interrupts. In this paper, we propose ThermalScope, a
new side channel that exploits thermal event interrupts, which is
adaptable for both native and browser scenarios and incorporates
two heat amplifying techniques. The thermal event interrupts are
activated only when the CPU package temperature reaches a fixed
threshold that is determined by manufacturers. Our key observa-
tion is that workloads running on CPUs inevitably generates their
distinct heat, which can be correlated with the thermal event inter-
rupts. To demonstrate the viability of ThermalScope, we conduct a
comprehensive evaluation on multiple Ubuntu OSes with different
Intel-based CPUs. First, we show that the activation of thermal
event interrupts correlates with the level of CPU temperature. We
then apply ThermalScope to mount different side channel attacks,
i.e., building covert channels with a transmission rate of 0.1 b/s,
fingerprinting DNN model architectures with an accuracy of over
90% and breaking KASLR within 8.2 hours.

1 INTRODUCTION
Interrupts play a critical role as hardware resources in a modern
operating system (OS), enabling OS process scheduler to preempt
a running process and execute a corresponding interrupt handler.
As some types of interrupts are triggered by users’ activities, they
have been abused as side channels.

Existing interrupt side channel attacks have exploited keystroke
interrupts [6, 10, 11], graphic interrupts [7], and network inter-
rupts [2, 13] to break system confidentiality. Specifically, keystroke
interrupts will be generated when a user presses keyboard. As
the interval between every two consecutive keystrokes correlates

This work was supported by the National Natural Science Foundation of China (Grant
No. 61672062). † Co-first authors. ∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3656525

with user inputs, the inputs can be inferred via keystroke-based
interrupts [6, 10, 11]. When GPU handles different workloads, it
triggers a different number of graphic interrupts. With this ob-
servation, Ma et al. [7] exploit the graphic interrupts to identify
different activities inside integrated/isolated GPUs. Last, network
interrupts are triggered when websites are accessed. As different
website access generates distinct network interrupts, they can be
used to fingerprint websites [2, 13].
Our contributions: In this paper, we present ThermalScope, a
new interrupt side channel attack through thermal event interrupts.
This type of interrupts occurs when the temperature of an x86 CPU
package is higher than a predetermined threshold, enabling the
kernel to adjust throttling strategies in a timely manner. Our key
observation is that workloads running onCPUs inevitably generates
their distinct heat, which can be correlated with the thermal event
interrupts. If the package temperature reaches the threshold when
the victim code is executed, the thermal event interrupts will serve
as a side channel to leak the victim’s activity.

Observing Thermal Event Interrupts. To exploit the thermal event
interrupts, we first need to observe them. We consider two real-
world scenarios in this paper, i.e., native scenario and browser sce-
nario. In the native scenario, aligned with [7, 13], we can use the
/proc/interrupts interface to collect the statistics of thermal
event interrupts. However, the interface can be disabled to miti-
gate aforementioned interrupt side channels [2]. As a bypass, we
have identified thermal_throttle, an interface that allows us to
obtain the number of thermal events that are logged by the thermal
event interrupt handler. In the browser scenario where the attacker
cannot access the system interfaces, we can use a loop-counting
program to observe all incurred interrupts, including thermal event
interrupts of our interest.

Triggering Thermal Event Interrupts. As the heat emanated by vic-
tim code may not be sufficient to cause the temperature to exceed
the predetermined threshold, the second challenge is to reliably
trigger the featured thermal event interrupts. To address this chal-
lenge, we propose two heat amplifying techniques: Heat Padding
and Heat Relaying. First, on a multi-core system, the CPU package
temperature is determined jointly by the workloads of all cores.
With Heat Padding, the attacker executes a computing-intensive
code concurrently with the victim code to push the temperature to
reach the threshold. Second, as the decrease in temperature requires
a significant amount of time, the temperature increments caused by
a computing task can be observed even after it is stopped.WithHeat

https://doi.org/10.1145/3649329.3656525

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Zhang et al.

Relaying, the attacker executes another computing-intensive code
right after a piece of attacker-controlled code is finished. When
starting from a higher temperature, the attacker requires to execute
fewer instructions, enabling she to distinguish the heat generated
by the first piece of code.

To demonstrate that the thermal event interrupts are exploitable,
we utilize ThermalScope to mount three side-channel attacks. First,
we apply ThermalScope to build a covert channel with a transmis-
sion rate of 0.1 b/s. Second, we demonstrate that ThermalScope can
be used to infer the activity of the victim process, fingerprinting
the DNN model architectures with an average accuracy of over
90%. Last, ThermalScope successfully derandomizes kernel address-
space layout randomization (KASLR) within 8.2 hours.
Summary of contributions: The contributions are summarized
as follows:
•We propose ThermalScope, a new interrupt side channel through
thermal event interrupts. To the best of our knowledge, we are the
first to present the security implications of thermal event interrupts.
• ThermalScope is adaptable for both native and browser scenarios
and incorporates two heat amplifying techniques. We have identi-
fied a new interface (i.e., thermal_throttle) to retrieve thermal
event interrupts.
•We conduct three end-to-end attacks to evaluate ThermalScope
with different Intel-based CPUs, including building covert channel,
fingerprinting DNN model architectures, and breaking KASLR.

2 BACKGROUND AND RELATEDWORK
2.1 Interrupt Side Channel Attack
As different interrupts are activated when the system handles dif-
ferent workloads, existing interrupt side channel attacks have ex-
ploited various types of interrupts, such as keystroke interrupts [6,
10, 11], graphic interrupts [7], and network interrupts [2, 13], to
break system confidentiality.

First, when a victim presses the keyboard to input her secret,
keystroke interrupts are activated to invoke the corresponding
interrupt handler. Because the context needs to switch into kernel,
the timestamp observed by users will become discontinuous. An
unprivileged attacker can use the timing side channel to monitor
the keystroke interrupts to infer the victim’s input [6, 11]. Besides,
when the corresponding interrupt handler code is loaded, the cache
state changes. With this observation, KeyDrown [10] proposes
to use cache side channel to detect the memory accesses to the
interrupt handler code, thereby monitoring keystroke interrupts.
To find targeted cache sets, they need the physical addresses of the
keystroke interrupt handler.

Second, graphic interrupts are activated by a GPU when there
is a need to handle specific tasks related to graphics processing,
indicating significant events such as the completion of a graphics
command or reporting a hardware error. The timing interval be-
tween every two graphic interrupts varies depending on the specific
workloads being processed by the GPU. Ma et al. [7] exploit graphic
interrupts as a separate side channel to leak the activities inside the
integrated and isolated GPUs. They successfully mount several side-
channel attacks under various scenarios, including fingerprinting

documents, distinguishing applications, and recognizing non-GUI
applications.

Last, the activation of network interrupts is related to network
activities. For example, when data packets arrive at the network
interface, network interrupts need to be activated to handle the
reception and processing of the incoming data. Different websites
can trigger different network activities, including distinctive net-
work interrupts. An attacker can use these interrupts to fingerprint
websites [2, 13], whose attack typically consists of two phases: an
offline preparation phase and an online classification phase. In the
offline phase, the attacker collects a number of interrupt traces and
utilizes them to train the classifier. In the online phase, while the
victim is opening a website, the attacker employs the pre-trained
classifier to fingerprint which website the victim is visiting.

2.2 Thermal Event Interrupts
To implement a thermal throttling mechanism, x86 CPU cores
within a package are equipped with a package thermal sensor (i.e.,
MSR 0x19c). When the sensor detects that the package tempera-
ture reaches a pre-determined threshold, thermal event interrupts
will be triggered, generating context switches and enabling the OS
kernel to cool off the package.

Specifically, when a workload is scheduled to execute, it will
generates heat and the temperature of the CPU package on a whole
will increase. If the thermal sensor detects that the temperature
reaches the threshold, a thermal event interrupt will be generated
and sent to every CPU core, switching their context to the kernel.
As a response, the kernel logs the thermal event and takes actions
against related cooling devices (e.g., increasing the fan speed, re-
ducing the CPU frequency, etc). In Linux, the kernel has assigned
an interrupt number to the thermal event interrupt and extended
/proc/interrupts to record its statistics since version 2.6.

3 THERMALSCOPE
In this section, we exploit thermal event interrupts to construct
ThermalScope. First, we present the threat model and assumptions.
Second, we introduce how we observe the thermal event interrupts
in both native scenario and browser scenario. Last, we propose two
heat amplifying techniques to trigger the thermal event interrupts.

3.1 Threat Model and Assumptions
In our threat model, we assume an unprivileged attacker. Thus, the
attacker cannot make any modifications to a victim x86-based sys-
tem. In the native scenario, the attacker can access local resources
(e.g., system interfaces). In the browser scenario, the attacker is
allowed to run their code in a sandbox.

To utilize our proposed heat amplifying techniques, the attacker
needs to run her compute-intensive task to stress the CPU cores.
Specifically, Heat Padding requires that the attacker runs her code
concurrently with the victim code on another core and Heat Re-
laying requires that the attack code time-shares a core with the
measured code.

To build covert channels, two user processes collude with each
other. To fingerprint DNN model architectures, we assume that

ThermalScope: A Practical Interrupt Side Channel Attack Based On Thermal Event Interrupts DAC ’24, June 23–27, 2024, San Francisco, CA, USA

the victim selects private models from PyTorch vision DNN archi-
tectures. To break KASLR, the victim system does not have any
software bugs or vulnerabilities that enables the attacker to acquire
a mapped kernel address.

3.2 Observing Thermal Event Interrupts
In this section, we discuss how to observe thermal event interrupts
in native and browser scenarios.

In the native scenario, the /proc/interrupts interface provides
statistics of various types of interrupts, which is available to unpriv-
ileged processes in Linux. Previous works have exploited the inter-
face to observe targeted device interrupts, such as GPU [7]. Similar
to them, we can also leverage this interface to retrieve the thermal
event interrupts. To mitigate existing interrupt side channels, the in-
terface can be disabled for unprivileged users. To bypass the mitiga-
tion, the /sys/devices/system/cpu/cpuX/thermal_throttle in-
terface has been identified to provide information about our tar-
geted thermal event interrupts. Specifically, this interface allows
us to obtain the number of thermal events, whose logging depends
on whether there is a thermal event interrupt occurring within a
certain time interval.

In the browser scenario, the two interfaces above become inac-
cessible. To address this challenge, we use a loop-counting program
to observe interrupts that have occurred, including thermal event in-
terrupts. Specifically, the program loops to increase a counter value
and sample its increment at fixed time intervals set by a timer. If the
running core receives any interrupt (e.g., thermal event interrupts),
context switch occurs, slowing down the counter’s increment and
thus signaling the occurrence of an interrupt. As high-resolution
timers are crippled in browser scenario, the loop-counting program
uses a low-resolution timer with a granularity of millisecond (e.g.,
1ms for Chrome and Firefox) to monitor interrupts.
3.3 Triggering Thermal Event Interrupts
In this section, we discuss two heat amplifying techniques to trigger
thermal event interrupts.
Heat Padding: On a multi-core system, the CPU package tem-
perature is determined jointly by the workloads of all cores. To
amplify the temperature increments, the attacker can execute an-
other compute-intensive code (called padding code) concurrently
with the victim code. The padding code loops to execute the same
instructions to generate constant heat, which is used to ensure that
the package temperature exceeds the threshold to activate thermal
event interrupts. Because the heat caused by the padding code is
stable, the variation of thermal event interrupts can be attributed
to the victim code. In this way, an attacker can infer victim activity
by observing the induced thermal event interrupts.

As shown in Fig. 1, to construct Heat Padding, the attacker needs
to run her padding code on a different core with the one occupied by
the victim. By selecting an appropriate padding code, the package
temperature is amplified near the threshold, causing distinctive
thermal event interrupts during the execution of the victim program.
She can infer the activity of the victim code via the activation of
thermal event interrupts.

https://github.com/pytorch/vision

Core 1

Padding Code

Heat

Victim Code

 Num of TRM

Core 2 Core 3 Core i Core n... ...

TimeTime

Thermal Sensors

Victim Attacker

Figure 1: An illustration of using Heat Padding to exploit
thermal event interrupts (TRM).

Time

Temperature

Attacker-controlled Code Attack Code
Is the remnant heat
high or low?

Threshold

M

Figure 2: An illustration of using Heat Relaying to exploit
thermal event interrupts.

Heat Relaying: Since the temperature increments caused by the
computing task can be observed even after it is stopped, these in-
crements can expose secret information to the following processes,
especially when they share the same physical core [8]. This rem-
nant heat allows the process to infer sensitive information from its
predecessor, thereby violating time division. Unlikely other types
of shared system resources that can be reset before context switch-
ing (e.g., CPU registers), as the decrease in temperature requires a
significant amount of time, the remnant heat is hard to eliminate.

In this paper, we leverage the remnant heat to construct Heat
Relaying, a new technique that obtains temperature observations
by triggering featured thermal event interrupts. To achieve this, the
attacker is required to execute her code on the same CPU core as the
victim’s code. As shown in Fig. 2, two pieces of code are executed
sequentially. One piece is attacker-controlled code (e.g., a code snip-
pet that accesses a kernel address in breaking KASLR) that executes
a computational task related to user’s secret. Obviously, according
to the instructions and data executed, the attacker-controlled code
will cause different heat (i.e., the red dot is higher than the blue
dot). The other piece contains ThermalScope. After the execution
of the attacker-controlled code, ThermalScope-based code loops
to execute a specific operation until a thermal event interrupt is
detected. Even if there is heat loss caused by the cooling device, the
heat generated by the attacker code should be negatively correlated
with the remnant heat. Considering that the heat generated by
the attack code depends on the number of executed instructions,
when starting from a higher temperature (the red dot), the attack
code requires fewer instructions to execute. We use the number of
executed instructions to guide our attack.

4 EVALUATION
In this section, we characterize ThermalScope and demonstrate
how ThermalScope can be used to mount end-to-end attacks.

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Zhang et al.

Machine CPU Kernel OS

Xiaomi Air 13.3 Intel Core i5-8250U 5.15.0 Ubuntu 20.04.5
Lenovo Savior R9000 Intel Core i7-9750H 5.8.0 Ubuntu 22.04.1

Gigabyte z790 (motherboard) Intel Core i7-14700K 5.15.0 Ubuntu 20.04.1

Table 1: System configurations.

Machine settings: We evaluate the performance of ThermalScope
under various target systems as shown in Table 1, including differ-
ent Intel-based CPUs. Unless otherwise stated, we use the default
system configuration.

4.1 Characterizing ThermalScope
As outlined upon, based on observing a correlation between CPU
package temperature and activation of thermal event interrupts, we
construct ThermalScope. To show the effectiveness of our method
in measuring temperature changes, we compare ThermalScope
results with the temperature variation reported by the hwmon in-
terface. hwmon is a mechanism for measuring and controlling the
temperature of individual components of Linux-based machines. It
provides a real-time measurement of the temperature for each CPU
core, based on high resolution sampling of the integrated thermal
sensors inside the CPU.
Experimental setup: In this experiment, /proc/interrupts is
used to obtain the interrupt statstics and thermal_throttle is
used to obtain the number of thermal events. Aligned with pre-
vious work [7], we choose a sampling period of 50 ms. To cause
temperature increments, we use a certain number of sqrt operations
to calculate the square root of a non-negative random number. We
separately evaluate ThermalScope from two aspects on the Lenovo
machine. First, we executes sqrt operations for 10 seconds and
sleeps for 10 seconds in turns. In the same time, we use another
process running on a separate core to record the temperature via
hwmon, the number of thermal event interrupts, and the number of
thermal events every 50 ms. In this way, we can directly observe
the relationship between the activation of thermal event interrupts
and CPU package temperature.

Second, we apply Heat Relaying technique to observe the re-
lationship between the number of needed instructions and CPU
starting temperatures. To achieve this, we have two pieces of code
to execute. The first piece of code (i.e., attacker-controlled code)
performs a random number of sqrt operations to cause different
starting temperatures. Then, the second piece of code starts loops
to execute sqrt operations and records the number of executed op-
erations. In the same time, its child thread running on another core
is used to monitor the activation of thermal event interrupts and
notify the heating process to break their loops if a new interrupt is
observed. We run the above steps for 1000 times.
Experimental results: As shown in Fig. 3, only when the tem-
perature reaches a threshold (e.g., 80 ◦C in our Xiaomi machine
and 90 ◦C in our Lenovo machine), the thermal event interrupts are
activated and the thermal events are logged. Besides, the number
of thermal events is less than thermal event interrupts, because
the logging frequency of thermal events is limited by kernel. If
there are two thermal events in a logging cycle, the kernel will only
log them once. Fig. 4 shows the relationship between heating time
and starting temperature. These two values approximately satisfy a

Figure 3: The relationship between the number of thermal
event interrupts (TRM), the number of package thermal
events, and temperature (through hwmon). Onlywhen the CPU
package temperature reaches a threshold, the thermal event
interrupts are activated and the thermal events are logged.

Figure 4: An approximate linear relationship between the
heating time and starting temperature (through hwmon).

linear relationship. The lower the starting temperature is, the more
sqrt operations are executed. So the attacker can use the number of
executed operations to infer the starting temperature that depends
on the system activity.

4.2 Building Covert Channels
A covert channel [1, 8] requires a pair of colluding sender and
receiver, which are usually not allowed to communicate over normal
channels. To implement a ThermalScope-based covert channel, a
sender actively executes sqrt operations on random numbers to
stress its CPU cores. Depending on the sender’s intention to send bit
‘0’ or bit ‘1’, the child threads create different heats. The receiver uses
the thermal_throttle interface to obtain the number of thermal
event interrupts. To ensure that the thermal event interrupts are
activated when sending bit ‘1’, the sender applies Heat Padding to
amplify the temperature increments.
Experimental setup: For each test, we transmit 1 kB of ran-
dom data between two unprivileged processes running on different
cores of the Lenovo machine. The sender controls the execution
number of sqrt operations to control the temperature changes. To
transmit a ‘1’, the sender executes sqrt operations for 5 seconds
and sleeps for 5 seconds. To transmit a ‘0’, it sleeps for 10 seconds.
Besides, the sender uses a process running on a separate core to
continuously increment a counter, ensuring that the thermal event
interrupts can be activated when sending bit ‘1’. The receiver ob-
tains the increments of thermal event interrupts every ten seconds
via /proc/interrupts or thermal_throttle. By comparing with
a threshold, it identifies the increments as bit ‘0’ or ‘1’.
Experimental results: Our PoC code achieves a transmission rate
of 0.1 bit/s with a bit error rate of 0.2% for /proc/interrupts and
0.7% for thermal_throttle interface (average across 10 runs) in
our Lenovomachine. According to our observation, the main source

ThermalScope: A Practical Interrupt Side Channel Attack Based On Thermal Event Interrupts DAC ’24, June 23–27, 2024, San Francisco, CA, USA

of bit error is the remnant heat.When the sender continuously sends
multiple ‘1’ s, the temperature gradually increases and hampers
timely cooling, thereby impeding the transmission of subsequent
bits. However, this issue can be mitigated by extending the sleep
time, albeit at the expense of reduced bandwidth.

4.3 Fingerprinting DNN Model Architectures
To design an effective DNN model, developers need to spend sig-
nificant time and energy in searching and fine-tuning model archi-
tectures. The optimized model structures are always considered a
confidential property [3]. Furthermore, a known DNN architecture
can also help to mount adversarial transfer attacks [9], where the
attacker requires a substitute model to generate her adversarial
examples. The attack success rate depends on the architectural
similarity between the victim model and the substitute model.

Our key insight of using ThermalScope to fingerprint DNN ar-
chitecture is that there are a large number of matrix operations
executed during the inference process of DNNmodels, which causes
different pattern of heat. We can use ThermalScope as a side chan-
nel to fingerprint the DNN model structures. Aligned with previous
work [3, 9, 12], our model fingerprinting attack has two phases: an
offline preparation phase and an online classification phase. In the
offline preparation phase, we collect the thermal event interrupt
traces to build a series of well-trained classifiers, which can trans-
late a trace to its corresponding model architecture. In the online
classification phase, we query a black-box target model running on
the victim machine to trigger its model inference and collect our
side channel traces. Then we use the offline-trained classifiers to
fingerprint the model architectures.
Experimental setup: We carry out our experiments in all the
tested machines. The victim model uses PyTorch 1.13.0 with Python
version 3.9.13 as its underlying deep learning framework. The at-
tacker process and the victim process run on separate physical
cores. Aligned with [9, 12], the victim models are selected from the
PyTorch vision DNN architectures, including 36 architectures over
9 diverse architecture families. All the pretrained models expect
the input images to be 224x224 and normalized in the same way.
We run inference on the ImageNet ILSVRC Test set images. The
victim runs a DNN model in series for 25 seconds. We pin the
attack process and the victim process to separate cores to avoid
scheduling contention.

Model Family Model Architecture

VGG VGG11, VGG13, VGG16, VGG19
VGG11_bn, VGG13_bn, VGG16_bn, VGG19_bn

ResNet ResNet18, ResNet34, ResNet50, ResNet101, ResNet152
Wide_ResNet50_2, Wide_ResNet101_2, ResNext50_32x4d, ResNext101_32x8d

SqueezeNet SqueezeNet1_0, SqueezeNet1_1
DenseNet DenseNet121, DenseNet161, DenseNet 169, DenseNet201

ShuffleNet ShuffleNet_v2_x0_5, ShuffleNet_v2_x1_0
ShuffleNet_v2_x1_5, ShuffleNet_v2_x2_0

MnasNet MnasNet0_5, MnasNet0_75, MnasNet1_0, MnasNet1_3
MobileNet MobileNet_v2, MobileNet_v3_large, MobileNet_v3_small
AlexNet AlexNet

GoogleNet GoogleNet

Table 2: The 36 PyTorch vision architectures which were used
in evaluating our fingerprinting attack.

Aligned with [12], we run the inferences in series (not in a batch) because an attacker
would not have control over the batch size input to the victim model.

Under the native scenario, we sample the increment of thermal
event interrupts from /proc/interrupts by default at a fixed in-
terval of 50 ms and collect 1,000 points for each attack. Under the
browser scenario, a loop counting program is used to continuously
increment a counter value. We sample it at a fixed interval of 10 ms,
collecting 5,000 points for each attack. Because the loop-counting
attack code measures instruction throughput, which can be im-
pacted by processor frequency scaling, we use the Linux command
cpufreq-set to fix the CPU frequency in this setting. Besides, to
show the effectiveness of our method, we also test our method
in other settings including observing the other interrupts, overall
interrupts, and the thermal events. In the first two settings, We sep-
arately use /proc/interrupts to obtain the number of interrupts
other than thermal event interrupts and the number of the overall
interrupts on the attack core at a fixed interval of 50 ms. In the
thermal events setting, we use the thermal_throttle interface to
obtain the number of package thermal events on the attack core at
a fixed interval of 50 ms. For each setting, we record 100 traces for
each of the 36 model architectures.

We feed the collected side channel traces without any preprocess-
ing into the classifiers, including Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RForest), and k-Nearest
Neighbor (k-NN), to support our decision. For the SVM classifier,
we choose a linear kernel function, and the soft margin constant is
set to 10. For LR classifier, the range of penalty parameter C is 1,
10, 100, 1000. For the RForest classifier, we set the number of trees
as 100 and the maximum depth as 32. For the k-NN classifier, we
set the number of nearest neighbors as 10. For each classifier, we
perform the 10-fold cross-validation during the evaluation, where
nine folds are used as the training data, and the remaining one fold
is retained as the testing data.
Experimental results: As shown in Fig. 5, each of the selected
models exhibits a unique pattern, which depends on the unique
heat caused by the matrix operations in the model inference phase.
Table 3 shows the accuracy of various classifiers in fingerprinting
the DNN model architectures. For the two best classifiers (i.e., RFor-
est and SVM), the overall accuracy across the three tested machines
is over 90% in the two scenarios. Table 4 shows the accuracy of our
RForest classifier under different settings. Without thermal event
interrupts, using the other interrupts can only achieve a low success
rate of less than 50%. Besides, the average success rate of overall
interrupts setting is 89.8%, which explains why our attack works
in browser scenarios. The reason for the slightly higher success
rate of attacks in browser scenarios is that the loop-counting pro-
gram essentially observes the handling time of overall interrupts,
rather than the number, thus obtaining more information. Last,

(a) ResNet50 (b) VGG19

Figure 5: Thermal event interrupt patterns caused by differ-
ent DNN model inferences.

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Zhang et al.

Scenario
Classifier Native Scenario Browser Scenario

Xiaomi Lenovo Gigabyte Average Xiaomi Lenovo Gigabyte Average

SVM 0.940 0.980 0.821 0.914 0.937 0.929 0.930 0.932
LR 0.929 0.976 0.788 0.898 0.923 0.918 0.898 0.913

RForest 0.964 0.982 0.838 0.928 0.933 0.923 0.921 0.926
k-NN 0.879 0.930 0.784 0.864 0.912 0.904 0.883 0.900

Table 3: Classification accuracy across 10-fold cross validation for DNN model fingerprinting.

Setting Xiaomi Lenovo Gigabyte Average
Thermal Event Interrupts 0.964 0.982 0.838 0.928

Other Interrupts 0.418 0.407 0.382 0.402
Overvall Interrupts 0.927 0.941 0.825 0.898
Thermal Events 0.955 0.984 0.833 0.924

Table 4: The impact of the type of interrupts (RForest is used
as the classifier).

the success rate of using thermal_throttle interface to perform
attack is over 90%, indicating that our attack still works even if the
/proc/interrupts interface is disabled.

4.4 Breaking KASLR
In Linux, KASLR is implemented to randomize the base address
of the text segment at every boot time, aligning it with a 2MB
boundary and mapping it to an address within a range of 1GB. If
an attacker wants to determine the text base address, a maximum
of 512 times of guessing is needed. However, prior work [4, 5] has
shown that a side channel leakage occurs when executing prefetch
instructions on a memory address, depending on whether that
address is mapped or not. Our key idea of breaking KASLR using
ThermalScope is that the activation of thermal event interrupts
also depends on the execution of prefetch instructions. We can use
ThermalScope to distinguish the prefetch instructions to mapped
address from the prefetch instructions to unmapped address.
Experimental setup: There are two configurable parameters in
our prototype: the number of prefetch instructions to each pos-
sible address and the CPU core that is controlled by the attacker
to amplify the heat. We carry out our experiments on the Lenovo
machine listed in Table 1. We run our measurement 512 times,
prefetching data from address in 2 MB intervals within the range
0xffffffff80000000 to 0xffffffffc0000000. For each possible address,
the attacker-controlled code executes 3 billion prefetch instructions.
Then, the attack code, which time-shares the same physical core
with the attacker-controlled code, continuously computes sqrt func-
tions on a random number until the thermal event interrupt is
activated. The attacker uses the number of executed sqrt operations
to distinguish whether the address is mapped or not. Before each
try, we sleep for 30 seconds to cool down.

Figure 6: Number of executed sqrt operations when we apply
heat relaying on every possible base address.

Experimental results: Fig. 6 presents the results of our experi-
ment conducted on the Lenovo machine. The entire attack process
takes 8.2 hours. When prefetching a mapped memory, the execution
of prefetch instruction is faster and thus the starting temperature
for Heat Relaying is higher than others. As a result, fewer sqrt
operations are needed in Heat Relaying phase to make the pack-
age temperature reach the fixed threshold. Obviously, the slot 64
corresponds to the mapped address.

5 CONCLUSION
In this paper, we introduced a new side-channel attack, i.e., Ther-
malScope, which abuses thermal event interrupts as a side-channel.
These thermal event interrupts are activated only when the CPU
package temperature reaches a fixed threshold that is determined
by CPU manufacturers. ThermalScope is adaptable for both native
and browser scenarios and incorporates two heat amplifying tech-
niques. To demonstrate the viability of ThermalScope, we evaluated
ThermalScope on multiple Ubuntu operating systems with different
Intel-based CPUs. The experimental results demonstrate that Ther-
malScope can be applied to establish covert channels, fingerprint
DNN model architectures, and circumvent KASLR.

REFERENCES
[1] D. B. Bartolini, P. Miedl, and L. Thiele. On the capacity of thermal covert channels

in multicores. In European Conference on Computer Systems, 2016.
[2] J. Cook, J. Drean, J. Behrens, and M. Yan. There’s always a bigger fish: A clarifying

analysis of a machine-learning-assisted side-channel attack. In International
Symposium on Computer Architecture, page 204–217, 2022.

[3] Y. Gao, H. Qiu, Z. Zhang, B.Wang, H.Ma, A. Abuadbba,M. Xue, A. Fu, and S. Nepal.
Deeptheft: Stealing dnn model architectures through power side channel. In IEEE
Symposium on Security and Privacy, 2024.

[4] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch side-channel
attacks: Bypassing smap and kernel aslr. In ACM SIGSAC Conference on Computer
and Communications Security, page 368–379, 2016.

[5] T. Kim and Y. Shin. Thermalbleed: A practical thermal side-channel attack. IEEE
Access, 2022.

[6] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Mangard. Practical
keystroke timing attacks in sandboxed javascript. In European Symposium on
Research in Computer Security, pages 191–209, 2017.

[7] H. Ma, J. Tian, D. Gao, and C. Jia. On the effectiveness of using graphics interrupt
as a side channel for user behavior snooping. IEEE Transactions on Dependable
and Secure Computing, pages 3257–3270, 2021.

[8] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Capkun. Thermal
covert channels on multi-core platforms. In USENIX Security Symposium, 2015.

[9] K. Patwari, S. M. Hafiz, H. Wang, H. Homayoun, Z. Shafiq, and C.-N. Chuah. Dnn
model architecture fingerprinting attack on cpu-gpu edge devices. In European
Symposium on Security and Privacy (EuroS&P), pages 337–355, 2022.

[10] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, and S. Mangard.
Keydrown: Eliminating software-based keystroke timing side-channel attacks.
In Network and Distributed System Security Symposium, 2018.

[11] J. Trostle. Timing attacks against trusted path. In IEEE Symposium on Security
and Privacy, pages 125–134, 1998.

[12] J. O. Weiss, T. Alves, and S. Kundu. Ezclone: Improving dnn model extraction
attack via shape distillation from gpu execution profiles. arXiv preprint, 2023.

[13] R. Zhang, T. Kim, D. Weber, and M. Schwarz. (M)WAIT for It: Bridging the Gap
between Microarchitectural and Architectural Side Channels. In USENIX Security
Symposium, 2023.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Interrupt Side Channel Attack
	2.2 Thermal Event Interrupts

	3 ThermalScope
	3.1 Threat Model and Assumptions
	3.2 Observing Thermal Event Interrupts
	3.3 Triggering Thermal Event Interrupts

	4 Evaluation
	4.1 Characterizing ThermalScope
	4.2 Building Covert Channels
	4.3 Fingerprinting DNN Model Architectures
	4.4 Breaking KASLR

	5 Conclusion
	References

