
Achilles: A Formal Framework of Leaking Secrets from Signature Schemes via
Rowhammer

Junkai Liang1,∗, Zhi Zhang2,∗, Xin Zhang1,∗, Qingni Shen1,†, Yansong Gao2,
Xingliang Yuan3, Haiyang Xue4, Pengfei Wu4, Zhonghai Wu1,†

1Peking University, 2The University of Western Australia,
3The University of Melbourne, 4Singapore Management University

{ljknjupku, zzhangphd}@gmail.com, zhangxin00@stu.pku.edu.cn,
qingnishen@pku.edu.cn, garrison.gao@uwa.edu.au, xingliang.yuan@unimelb.edu.au,

haiyangxc@gmail.com, pfwu@smu.edu.sg, wuzh@pku.edu.cn

Abstract
Signature schemes are a fundamental component of cyber-

security infrastructure. While they are designed to be mathe-
matically secure against cryptographic attacks, they are vul-
nerable to Rowhammer fault-injection attacks. Since all exist-
ing attacks are ad-hoc in that they target individual parameters
of specific signature schemes, it remains unclear about the
impact of Rowhammer on signature schemes as a whole.

In this paper, we present Achilles, a formal framework
that aids in leaking secrets in various real-world signature
schemes via Rowhammer. Particularly, Achilles can be used
to find potentially more vulnerable parameters in schemes
that have been studied before and also new schemes that are
potentially vulnerable. Achilles mainly describes a formal
procedure where Rowhammer faults are induced to key pa-
rameters of a generalized signature scheme, called G-sign,
and a post-Rowhammer analysis is then performed for secret
recovery on it. To illustrate the viability of Achilles, we have
evaluated six signature schemes (with five CVEs assigned
to track their respective Rowhammer vulnerability), cover-
ing traditional and post-quantum signatures with different
mathematical problems. Based on the analysis with Achilles,
all six schemes are proved to be vulnerable, and two new
vulnerable parameters are identified for EdDSA. Further, we
demonstrate a successful Rowhammer attack against 3 of
these schemes, using recent cryptographic libraries including
wolfssl, relic, and liboqs.

1 Introduction

Signature schemes play a significant role in computer and
network security, serving applications such as protecting per-
sonal information [1, 2], blockchain authentication [3, 4],

*: The authors contribute equally to this paper.
†: Corresponding author. This work was supported by the National

Key R&D Program of China under Grant No. 2022YFB2703301, PKU-
OCTA Laboratory for Blockchain and Privacy Computing and the Singapore
Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant.

and many others [5, 6, 7, 8]. As a result, their implementa-
tions have been the target of numerous Rowhammer fault
attacks [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Rowham-
mer [20] stands out as the only fault, to date, that unprivileged
software can effectively and reliably induce in the Dynamic
Random Access Memory (DRAM) of commodity systems.
Rowhammer attacks against signature schemes: Existing
attacks target individual parameters of a specific signature
scheme. According to whether a parameter is public, the at-
tacks can be classified into two categories: faulting public
parameters (pp) and faulting secret parameters (sp).

In the first category, researchers have shown that the se-
cret key from RSA can be recovered by faulting the message
m being signed [13, 21]. Similarly, Poddebniak et al. [12]
demonstrate the secret key recovery from EdDSA by fault-
ing m. These works utilize Differential Fault Analysis (DFA),
which computes the differences between a valid signature
and a faulty signature after inducing faults in m, to reveal the
secret key.

In the second category, some works fault the secret keys of
various signature schemes (e.g., ECDSA [22], LUOV [23], and
Dilithium [24]), while others focus on injecting faults into the
nonce in ECDSA [25, 26]. With faulty signatures generated
via faulting a secret parameter, a different technique called
Signature Correction Analysis (SCA) is employed to recover
bits of the secret. Since SCA can only extract one bit at a time
by correcting a faulty signature, it requires many more faulty
signatures compared to DFA.

Despite the growing threat of Rowhammer against signa-
ture schemes, we observe that all the aforementioned attacks
are ad-hoc, each targeting a specific scheme with a narrow
focus on limited parameters. The impact of Rowhammer on
signature schemes as a whole remains unclear, and thus, we
are interested in the following questions:
1. Is there a formal framework that describes how Rowham-

mer can be exploited to leak secret keys from signature
schemes?

2. If so, can this framework help uncover additional vulnera-
ble parameters in previously studied schemes?

3. Further, can it be used to identify new schemes that are
susceptible to Rowhammer attacks?

In this work: we offer affirmative responses by introducing a
framework termed as Achilles. With Achilles, leaking secrets
from signature schemes consists of the following four steps
(in Section 4):

• First, we generalize various real-world signature schemes
and derive an abstract framework (coined as G-sign). This
framework encompasses a set of key parameters, each cat-
egorized as either pp or sp. With G-sign, a signing oracle
OSign is defined to generate valid signatures upon queries.

• Second, considering Rowhammer’s characteristics,
Achilles formalizes Rowhammer-based faults against
G-sign, where a parameter is faulted. Based on faulted
G-sign, the other signing oracle OFSign is defined to
generate faulty signatures.

• Third, with OSign and OFSign, we build a game-based
model to check how a secret key can be recovered after a
fault. Further, whether a fault occurs to pp or sp can be
decided through the model.

• Last, depending on whether a faulty parameter belongs to
pp or sp, DFA or SCA is used for the secret key recovery.
As SCA cannot recover every secret bit, the state-of-the-art
(SOTA) solution [22] recovers the remaining w bits with a
high memory complexity of O(

√
2w). We propose a more

efficient SCA algorithm with a memory complexity of only
O(1).
To demonstrate the viability of Achilles, we have analyzed

six signature schemes—BB short, EdDSA, ML-DSA, RSA,
Elgamal, BLS —using an automated tool to identify their
potentially vulnerable parameters. The signature schemes
cover traditional and post-quantum signatures with different
mathematical problems. Section 5 provides an analysis of
BB short [27], and EdDSA [28] while Appendix A provides
ML-DSA [29], RSA [30], Elgamal [31] and BLS [32]. While
EdDSA has been faulted before [12], BB short and ML-DSA
have not yet been studied. Based on Achilles, we identify that
the secret key d in BB short, s in EdDSA, s1 in ML-DSA, the
hash value or inputs h,R,P,m in EdDSA, c,µ,w in ML-DSA,
secret x in BLS can be vulnerable to Rowhammer attacks. We
identify hash inputs R,P and secret key s as potentially new
vulnerable parameters in EdDSA that have not been exploited
before and find BB short and ML-DSA are also vulnerable.

To verify the potential vulnerability of the newly iden-
tified parameters in the schemes, we perform end-to-
end Rowhammer attacks against these schemes from re-
cent popular cryptographic libraries, i.e., wolfssl-5.6.6,
relic-toolkit-0.6.0, and liboqs-0.10.0 (in Section 6).
Due to the varying implementation details of each scheme,
there exists a challenge when faulting some parameters, i.e.,
the fault must occur in a fixed time window during the vic-
tim signing process. The window refers to the time period
between a parameter’s initialization and its use in subsequent

cryptographic computations. If the fault occurs outside the
window, it can either crash the signing process or fail to re-
cover the secret key. Unfortunately, the window for some
parameters is too small for a fault to be injected successfully.

To address this challenge, we leverage OS signals. Specifi-
cally, the attacker process signals the OS kernel upon detect-
ing the completion of the targeted parameter’s initialization.
When the kernel receives the signal, it switches the signing
process off the CPU, suspending it for a period of time. If the
OS kernel is signalled frequently, the signing process remains
suspended longer, indicating that the targeted parameters are
not yet involved in any computation and can be faulted during
this period.

To mitigate the attacks, we discuss possible countermea-
sures in Section 7, including our proposed one that has been
adopted by wolfssl as an official patch.
Contributions: we have made four main contributions:
• To the best of our knowledge, we introduce the first formal

framework that enables the revelation of potentially new
vulnerable parameters and schemes. Our work underscores
the importance of systematizing Rowhammer attacks tar-
geting cryptographic schemes.

• We propose a new algorithm for recovering remaining bits
after SCA through hash collision. This algorithm is much
more memory-efficient than the SOTA [22].

• We perform three representative case studies of 6 schemes.
These schemes feature diverse mathematical structures,
including bilinear groups, elliptic curves, and lattices. Our
case studies show that Achilles uncovers potentially new
vulnerable parameters in EdDSA and new vulnerable
schemes, i.e., BB short and ML-DSA.

• We conduct end-to-end Rowhammer attacks against the
schemes using their recent cryptographic libraries, i.e.,
wolfssl, relic, and liboqs and use instantiated DFA or
SCA with SCARA for the secret key recovery. Specifically,
we demonstrate a full secret-key recovery of EdDSA and
ML-DSA by faulting one of their public parameters. When
faulting their private parameter, we have leaked 78, 85, 38
secret bits in BB short, EdDSA, and ML-DSA, respectively.

1.1 Responsible Disclosure

We have disclosed our findings to the security teams
of wolfssl, relic, crypto++, and liboqs. We have
been assigned 5 different CVEs (CVE-2024-2881, CVE-
2024-1545, CVE-2023-51939, CVE-2024-28285, CVE-2024-
31510), which track a fault-injection vulnerability in EdDSA,
RSA, BB short, Elgamal, and ML-DSA, respectively.

2 Background and Related work

In this section, we introduce Rowhammer and its attacks
against signature schemes.

Rowhammer is a software-induced fault in DRAM that
can cause bit flips in the main memory of a commodity
system [20]. Existing Rowhammer attacks against signature
schemes target flipping critical parameters. Based on whether
a parameter is public or private, we classify the attacks into
the following categories.
Faulting pp: This category of attacks injects faults into pub-
lic parameters, resulting in faulty signatures. An attacker can
recover the secret key by comparing a valid signature with a
faulty one. These attacks are effective since only two signa-
tures are needed, but they necessitate knowledge of specific
parameters for fault injection. In the RSA scheme, Boneh et
al. [18] described the Bellcore attack, which injects faults
into Chinese Remainder Theorem (CRT) implementation.
Through a differential analysis of the faulty signature, the
modulus N can be factored, indicating a leakage of the secret
key. Bhattacharya et al. [13] utilized this attack with Rowham-
mer. For EdDSA, Poddebniak et al. [12] injected faults to the
message and recovered the key by solving a linear equation.
Faulting sp: The attacker exploits a fault injection technique
to induce a slight leakage in the secret parameter. By manipu-
lating the faulty signature to appear valid, the attacker attains
partial disclosure. This attack has been demonstrated on the
nonce in ECDSA. Studies have revealed that even a small
amount of leaked nonce bits can be leveraged to recover the
secret key in ECDSA signatures [14, 33, 34]. Additionally, the
possibility of leaking bits by intentionally faulting the secret
key exists. Mus et al. [22] introduced a novel attack vector
involving the injection of faults into the secret key, subse-
quently leaking the key bit by bit. In post-quantum schemes,
Mus et al. [23] conducted a fault attack on a secret matrix
within LUOV, achieving complete key recovery through fur-
ther analysis. Islam et al. [24] focused on Dilithium by faulting
a secret polynomial and have recovered partial of the secret.

3 Threat Model and Assumptions

Aligned with existing Rowhammer attacks targeting crypto-
graphic schemes [13, 22, 23, 24, 35], we assume an attacker
can launch an arbitrary unprivileged user process without root
privileges on a modern Linux operating system. The attacker
is familiar with the Linux OS’s behavior, including its sig-
nal mechanism and Buddy Allocator. The OS is functioning
correctly without any vulnerabilities. The attacker’s objec-
tive is to induce desired bit flips in the underlying physical
memory used by a victim process running a targeted cryp-
tographic signature scheme. For the fault to be exploitable,
the attacker needs the fault occurs in a specific key parameter
of the scheme within a specific time window. The attacker
is assumed to have knowledge of the scheme, including its
secret key bit-length and public key, and can query the scheme
during runtime.

The hardware resources are managed by the OS and shared
among user processes, including both the attacker and the

victim. The CPU is x86-based, allowing the attacker to lever-
age existing tools [36, 37] to reverse-engineer the machine’s
DRAM address mapping function. The physical memory
is supported by DRAM modules (e.g., DDR3 and DDR4)
with default refresh rates and is assumed to be vulnerable to
Rowhammer-induced bit flips. The location and direction of
these bit flips are specific to the DRAM module in use.

While modern DRAM modules such as DDR4 and DDR5
are equipped with Target Row Refresh (TRR) to mitigate
Rowhammer, prior works have demonstrated that they remain
vulnerable [38, 39]. Similarly, Error-Correcting Code (ECC)
memory, once thought to provide robust protection against
Rowhammer on enterprise-grade machines, has been shown
to be insecure against such attacks [40]. In our end-to-end
demonstration, the attacker considers non-ECC DRAM and
uses TRRespass [38] to bypass TRR.

The OS runs memory-light tasks, enabling the attacker to
utilize most of its available memory, where numerous 2 MB
contiguous memory blocks are allocated. This eliminates the
need to access the privileged interface pagemap. Within these
allocated 2 MB memory blocks, the attacker leverages the
reverse-engineered DRAM address mapping function and
TRRespass [38] to identify sufficient Rowhammer-induced
bit flips (in Section 6.2). To induce targeted bit flips in the
victim’s memory promptly, the attacker first manipulates the
Buddy Allocator to coerce the victim into reusing vulnerable
physical pages for storing targeted parameters. The attacker
then leverages the signal mechanism to execute Rowhammer
within a constrained time window, flipping the desired bits in
the targeted parameters (in Section 6.3).

4 Achilles

In this section, we begin with an overview of Achilles, fol-
lowed by a detailed description.

4.1 Overview
Figure 1 illustrates how Achilles works in four main steps,

as described below:
• First, we establish a formal framework (denoted as G-

sign) for a paradigm of representative real-world signature
schemes including those based on different mathematical
structures, e.g., bilinear groups, elliptic curves, and lattices.
G-sign maintains a set of key parameters, classified as pp
(public parameters) or sp (secret parameters), according to
whether they can be publicly available. Using G-sign, main
parameters of a given real-world scheme can be treated as
either pp or sp for subsequent analysis in Section 5. OSign
is defined to be a signing oracle that retrieves correct sig-
natures from G-sign.

• Second, we formalize a Rowhammer fault against G-sign,
targeting a specific parameter in pp and sp. With a faulted
parameter from G-sign, we then design a “special” signing

Gen(1n)

1 : (pk,sk)← Setup(1n)

2 : return (pk,sk)

Sign(pk,sk,m)

1 : r←R or F(sk,m)

2 : h← H(pk,sk,m,r)

3 : σ← P(pk,sk,h,r,m)

4 : return σ

V r f y(pk,m,σ)

1 : return 1 or 0

Figure 1: A paradigm of representative signature schemes (denoted as G-sign).

oracle, OFSign, to obtain faulty signatures from faulted
G-sign.

• Third, with OSign and OFSign, we build a game-based
model to perform post-Rowhammer analysis for secret key
recovery. Through the model, whether a fault occurs to pp
or sp can be decided.

• Last, when a parameter from pp is faulted, DFA is used
to compare the differences between a valid signature and
a faulty one to recover the secret key. When a parameter
from sp is faulted, SCA is used to correct a faulty signature
to a valid one, leaking one secret bit. Since not all DRAM
cells are vulnerable to Rowhammer faults, SCA cannot
recover all the secret bits. To address this limitation, we
employ Pollard Rho’s birthday attack algorithm, which is
more memory-efficient than the current SOTA [22].

4.2 Formal Treatment of Signature Schemes

As depicted in Figure 1, G-sign consisting of three algorithms
Gen,Sign, and V r f y.
• Gen(1n): On input security parameter n, the algorithm runs

the probabilistic algorithm Setup and generates public ver-
ification key pk and secret key sk respectively.

• Sign(pk,sk,m): On input pk,sk, and a message m, the algo-
rithm first generates r from the random spaceR or comput-
ing a deterministic function F on sk and m. Then, it com-
putes a hash digest h via a function H on possible inputs
pk,sk,m, and r, and finally output σ = P(pk,sk,h,r,m) as
the signature where P is the proving procedure.

• V r f y(pk,m,σ) on input pk, a message m and a signature
σ, outputs 1 or 0 indicating accept or reject, respectively.
Clearly, in G-sign, the pp contains three parameters pk,h,

and m that can be made public. The sp includes sk and r that
are targeted by the attacker. Especially, G-sign can instantiate
various real-world digital signatures, including ECDSA [41],
EdDSA [28], BB short [27], and ML-DSA [29]. The last three
will be discussed in our case studies.

4.3 A Game-based Model against G-sign

We first formalize Rowhammer faults against G-sign in Fig-
ure 2. Then, we provide a cryptographic security game mod-
elling two types of leakage in Figure 3 based on our former
formulation.

In Figure 2, we first define a signing oracle OSign using
symbols in G-sign. Then, we provide a set of functions to
formally define the Rowhammer fault. With the fault func-
tions, we allow the attacker to access OFSign to obtain faulty
signatures. Below, we elaborate on OSign, fault function fi(x)
, and OFSign .

• OSign: OSign(pk,sk,m) is defined as a signing oracle that
returns a signature for any message queried by the attacker.
It stores an input message m in a set M and returns a valid
signature σ generated by computing Sign(pk,sk,m).

• fi(x): { fi(x)} is defined as a set of fault functions, each
inducing a bit flip on a parameter x. Initially, the set of
fault information f set

i is set empty. In line 2, it generates a
random number in the range (0, |x|−1) as the position of
a bit flip. In line 3, a binary addition ⊕ is operated on the
i-th bit of x and 1 to simulate the faulting process. In lines
4-5, f set

i stores the position k and value x[k] of the bit flip
and then returns the faulted x. The subscript i ranges from
1 to 11, denoting a fault to respective parameters in each
step of the scheme.

• OFSign: OFSign(i, pk,sk,m) is defined as a signing oracle
that faults the i-th parameter and returns a faulty signature
for a message m. Specifically, in line 1, only one fault
function, fi, is considered active, while the other functions
are set to be void, meaning that they simply pass the input
through to the output without any modification. In lines 2-4,
we apply the fault functions f1, . . . , f11 to all 11 parameters
in G-sign, respectively. In lines 5-6, the information of the
fault f set

i is recorded in the set Ff . The set MF contains all
messages that are sent to this faulty signing oracle. We note
that in OFSign, Rowhammer-induced faults are permanent.
For instance, if sk is faulted in line 3, then h would be faulty,
and this fault can further affect line 4, leading to a faulty σ.
Existing fault formulation [42, 43] do not account for this
persistent nature of Rowhammer-induced faults.

With OSign and OFSign, we formalize a game-based
model shown in Figure 3. ExpF can be run by a challenger
who wants to ensure the security of a signature scheme. In line
1, the set MF (resp., M) tracks messages sent to the OFSign
(resp., OSign) that returns a faulty (resp., benign) signature
and Ff tracks the information of the faults. Line 2 generates
a key pair sk, pk. In line 3, the function AOSign(·),OFSign(i,·)

is invoked with pk as input and it returns a tuple consisting
of a signature pair (m∗,σ∗) and faulty information f ∗. As

OSign(pk,sk,m)

1 : σ← Sign(pk,sk,m)

2 : M←M∪{m}
3 : return σ

fi(x)

1 : f set
i ← /0

2 : k← RNG(0, |x|−1)

3 : x[k]← x[k]⊕1

4 : f set
i ← f set

i ∪{k,x[k]}
5 : return x

OFSign(i, pk,sk,m)

1 : ∀ j ̸= i,set f j as a void function

2 : r←R or F(f1(sk), f2(m))

3 : h← H(f3(pk), f4(sk), f5(m), f6(r))

4 : σ← P(f7(pk), f8(sk), f9(h), f10(r), f11(m))

5 : Ff ←
⋃

f set
i

6 : MF ←MF ∪{m}
7 : return σ

Figure 2: Formalizing Rowhammer faults against G-sign.

ExpF(A)
1 : M← /0,MF ← /0,Ff ← /0

2 : (sk, pk)← Gen()

3 : (m∗,σ∗, f ∗)←AOSign(·),OFSign(i,·)(pk)

4 : v←V r f y(pk,m∗,σ∗)

5 : return 1 if v == 1∧m∗ /∈M∧m∗ /∈MF

6 : return 2 if v == 1∧m∗ /∈M∧m∗ ∈MF

∧ f ∗ ∈ Ff

7 : return 0,otherwise

Figure 3: A game-based experiment modelling post-
Rowhammer analysis.

discussed above, OSign and OFSign are oracles operated by
the challenger, providing auxiliary information. In line 4, the
challenger verifies the signature. If the verification succeeds,
the verification result v will satisfy the condition check in
either line 5 or line 6.

If the check on line 5 passes, three conditions are satisfied:
v == 1, m∗ /∈M and m∗ /∈MF . The condition v == 1 indi-
cates that the signature pair (m∗,σ∗) is valid. The conditions
m∗ /∈M and m∗ /∈MF confirm that the message m∗ was not
queried through the oracles OSign or OFSign. When these
three conditions are met, it implies that m∗ is a new message,
and the attacker has successfully leaked sk and used it to gen-
erate a valid signature σ∗ for m∗. Besides, the bit-flip fault
denoted by OFSign(i, ·) has occurred in pp. Leaking sk can
be done through DFA, which assumes faults in pp and com-
pares the difference between a faulty signature and a valid
one to extract sk.

If the check on line 6 passes, four conditions are satisfied:
v == 1, m∗ /∈M, m∗ ∈MF and f ∗ ∈ Ff . The first three con-
ditions are similar to line 5 except that m∗ ∈ MF indicates
the message m∗ was previsouly queried to OFSign. The con-
dition f ∗ ∈ Ff signifies that the attacker knows the position
and value of the bit flip when querying OFSign to generate a
faulty signature for m∗. When these four conditions are met,
it implies that m∗ is a message previously sent to OFSign and
that the attacker has succesfully corrected a faulty signature

to a valid one using the faulty information f ∗, leaking a bit
of sk. As noted above, f ∗ represents bit-wise leakage of a
faulty parameter, and in this case, the fault has occurred in
sp. Otherwise, the attacker can compute sk via DFA and thus
generate a valid signature without correcting the faulty one.
The process of signature correction and sk recovery can be
achieved through SCA.

4.4 Secret Key Recovery
In this section, we design DFA and SCA and explain them in
detail as follows.
Analysing a faulty public parameter with DFA: In algo-
rithm 1, the attacker faults a parameter in pp and obtains
faulty and valid signatures through the signature query in
lines 3-8 after initialization. In order to perform differential
analysis and extract the secret key, the attacker makes a differ-
ence between the valid and faulty signatures. In line 7, g(pp)
is a function that can be computed with only knowledge of
public parameters. If sk′ has a linearity with g(pp) such as
(σ−σ′) = sk′ ·g(pp), the secret key can be extracted.
Analysing a faulty secret parameter with SCA: In algo-
rithm 2, the attacker tries to fault each secret parameter and
output enough secret bits as leakage. Lines 1-2 are the ini-
tialization phase that defines and initializes certain symbols
for the algorithm. Lines 3-5 find the index for each parame-
ter in the for loop. Then, in lines 6-8, the attacker gains one
faulty signature and begins to correct the faulty signature.
To process one faulty signature, in lines 9-14, the attacker
enumerates all possible faults and corrects them to be valid.
If V r f y(pk · g(pp,∆d),m,σ) = 1 (where g is a public func-
tion that the attacker can compute), a successful correction
is found, and the attacker can deduce the nature of the fault
and store it as bit leakage. Note that in the signature scheme,
pk is determined by sk, and a faulty sk can correspond to a
different pk. Thus, we correct the signature by adding cor-
rection terms to pk. Finally, in line 16, if the quantity of the
remaining bit is less than 50, SCA is finished. We observe that
it is not always possible to completely leak all the secret bits,
as it is difficult for Rowhammer to fault every single bit of a
secret parameter. As such, we further propose an algorithm to

recover the remaining bits.

Algorithm 1: Post-Rowhammer analysis via DFA

1 Initially, S = (Gen,Sign,V r f y) is a signature scheme.
OFSign and fi(x) are function oracles defined in
Figure 2.

2 Parse S to G-sign
3 foreach p ∈ {m, pk,h} do

// get a valid and faulty signature.
4 σ← OSign(·)
5 Use i to denote the index for parameter p
6 σ′← OFSign(i, ·)
7 return sk′ = (σ−σ′)/g(pp)
8 end

4.4.1 SCARA: SCA remaining bits recovery

As SCA recover most secret bits, the time to recover the
remaining bits is significant [22]. To address this issue for
ECDSA, Mut et al. [22] proposed a modified baby-step giant-
step. This algorithm improves efficiency for computing re-
maining bits, however, it uses a time/space tradeoff technique
and the memory complexity is exponential to the number of
remaining bits.

Here, we demonstrate that this is unnecessary by devising
a generic algorithm to find the remaining bits through hash
collision. The algorithm to find hash collision only needs two
temporal variables in the while loop due to Theorem 1 (see
below).

Our algorithm follows the paradigm of Pollard Rho’s birth-
day attack algorithm for finding hash collisions. Through the
use of a meticulously crafted hash function, our algorithm
achieves the computation of remaining bits in time complex-
ity O(

√
2w), where the number of remaining bits is denoted

as w and employs constant memory complexity, O(1).
We divide x into two parts as the known and unknown bits

of x, x(k) and x(w), denoted as x = x(k)+x(w) where k+w = n.
To take advantage of the k known bits of secret x, we modify
public key pk to pk′ with x(k). Then, the algorithm finds a
hash collision based on pk′. For different schemes, we only
need to customize a hash function to make sure that certain
collisions can yield a solution for x(w). We give an example
of BB short discussed in case study Section 5.1.

HP(r1,r2) = gr1Q′r2 (1)

If a hash collision is found, which means gr1Q′r2 = gr′1Q′r
′
2 ,

the relation between g and Q′ can be easily computed as
gx(w) = Q′ where x(w) = (r1− r′1) · (r′2− r1)

−1.
A few technical details remain to be addressed. First, to

achieve constant memory, we utilize a chain of hash values
to find collisions. If a collision exists in two elements of the

Algorithm 2: Post-Rowhammer analysis via SCA

1 Initialization: S = (Gen,Sign,V r f y) is a signature
scheme; OFSign is a function oracle defined in
Figure 2; sk and r are key parameters defined in
Figure 1; sk′ stores the recovered bits and N is the
number of recovered bits. Initially, sk′ contains all 0
bit and N is 0; σ, ∆, i, j are all intermediate variables
defined in the loop.

2 Parse S to G-sign
3 foreach p ∈ {sk,r} do

// get a valid and faulty signature.
4 Use i to denote the index for parameter p
5 do
6 σ′← OFSign(i, ·)

// enumerate the one-bit fault.
7 ∆← 0, j← 0
8 do
9 if V r f y(pk ·g(pp,∆d),m,σ′) = 1 then

10 N ++
11 sk′ = sk′⊕∆

12 end
13 ∆← ∆ << 1, j← j+1
14 while j < |sk′|
15 while |sk′|− recovered_bits > 50
16 end
17 return sk′

chain, the loop will terminate. The correctness is guaranteed
by Theorem 1.

Theorem 1. Let s1,s2, ...,sq be a sequence of values with
sm = f (sm−1), if sI = sJ with 1 < I < J ≤ q, then there is an
i < J such that si = s2i. [44]

A hash output is used as input for the next hash, necessi-
tating that the range of the hash function is a subset of its
domain. Additionally, within the function domain, we impose
the requirement that the bits not in the need-to-recover po-
sition be set to 0. This process is represented by functions
E and H, ensuring that the return value of Hg,Q′ maps to the
correct domain.

The complexity of this algorithm primarily depends on the
number of iterations in the while loop. Since the hash value
can be considered as randomly independent, the procedure
for finding a collision essentially resembles a birthday attack,
resulting in a time complexity of O(

√
2w). Moreover, due to

using only two temporary variables during the loop, the space
complexity remains at O(1).

5 Case Studies

In this section, we demonstrate how Achilles can be leveraged
to analyse a given scheme’s susceptibility to Rowhammer.

We have performed an analysis of 6 different schemes, i.e.,
BB short [27], EdDSA [28], ML-DSA [29], RSA [30], Elga-
mal [31] and BLS [32]. The analysis of BB short and EdDSA
is provided below. For ML-DSA, RSA and Elgamal, they are
included in Appendix A due to page limit.

Our case study is a walk-through of Achilles. First, we
mathematically describe a signature scheme’s implementa-
tion and transform it into G-sign, mapping its parameters to
a list classified as pp or sp. Note that not all parameters in
the scheme need to be mapped. Some immediate parameters
in generating a signature are filtered out as they do not con-
tribute to G-sign. Second, to satisfy the IF condition check
in either line 5 or line 6 of Figure 3, we instantiate DFA or
SCA to analyse each of the parameters that have been mapped.
If the secret key can be covered by faulting a parameter, the
parameter along with the scheme is potentially vulnerable.
Based on our analysis, all the schemes above are potentially
vulnerable to Rowhammer attacks, which are detailed be-
low. In Section 6, we perform real-world attacks against each
potentially vulnerable parameter. Besides, to accelerate the
whole analysis, we have automated the second step of iden-
tifying potentially vulnerable parameters for a scheme, as
detailed in Section 5.3.

5.1 Analysing BB short

In this analysis, we describe BB short [27], which is imple-
mented in relic-toolkit-0.6.0, based on which we show
how to leak the secret key via Rowhammer.
Gen(1λ): It generates a public key pk and a secret key sk.
Particularly, this algorithm builds on groups G1,G2 with their
generators g1,g2, respectively. The function e is defined as a
bilinear map G1×G2→GT , which has holomorphic property
such that e(ga,hb) = e(g,h)ab. The function randomly picks s
and further computes q← gs

2 and z← e(g1,g2). As such, the
pk is generated as (g1,g2,e,q,z) and the sk is defined as s.
Sign(pk,s,m): It takes s and m as inputs, where s is the secret
key and m is a message. Let H be a hash function. A signature
σ is computed as g1/(h+s)

1 , where h = H(m||q||z).
Vrfy(pk,m,σ): It takes a pair of (σ,m) and pk as inputs and
generates 1 if the following equation holds:

e(σ,q ·gh
2) = z (2)

We first parse this scheme to G-sign as depicted in Table 1.
DFA is not found because sk and h are on the denominator
when calculating the signature. However, when analysing sk,
we find BB short vulnerable to SCA.

When a single bit flip occurs to s right before Sign(s,m) is
invoked, the generated signature will become σ′ = g1/(h+s′)

1 ,
where σ′ is a faulty signature caused by a faulty secret key s′.

Here, we denote s′ as s+∆s where ∆s represents the in-
jected fault. To make Equation 2 hold, ∆s must satisfy the
following equations:

Algorithm 3: SCARA: recover the remaining secret
bits from SCA.

1 Input: public key pk; recovered t bits of secret key x;
Hash function H1 : {0,1}∗→{0,1}n; Hash function
HP : {0,1}n×{0,1}n is designed for underlying
problem; a sample function E : {0,1}n→{0,1}n, E
set bits not reside in the need-to-recover position to 0;
Represent function f : {0,1}n→{0,1}n as
f (s)← HP(E(H1(s))).

2 Output: Secret key x.
3 Represent x as x = x(k)+ x(w)

// Eliminate known bits from SCA

4 Compute pk′ = pk/g(x(k))
// Use E({0,1}w) to add extra t 0s so that

the result is n bits and the w bits are
in the need-to-recover position

5 s0←$ E({0,1}w)
6 s := s′ = s0
7 i := 0
8 do
9 s = f (s)

10 s′ = f (f (s′)) // now s = f (i)(s0) and

s′ = f (2i)(s0)
11 i = i+1
12 while s ̸= s′

13 s′ := s, s := s0
14 for j← 1 to i do
15 if f (s) = f (s′) then
16 x(w) = solve(f (s), f (s′))
17 return x = x(k)+ x(w)

18 break
19 else
20 s = f (s)
21 s′ = f (s′)
22 end
23 end

V r f y(pk ·g(pp,∆s),m,σ′) = 1 (3)

and g(pp,∆s) = g∆s
2 . It is easy to see g(pp,∆) can be com-

puted without secret parameters and thus Equation 3 holds (as
e(σ′,q ·gh

2 ·g∆s
2) = 1). We are able to find out the index of the

bit flipped in s and thus recover its original bit. Finally, to re-
cover the remaining bits, we use the hash collision algorithm
with the hash function defined in Equation 1.

5.2 Analysing EdDSA

In this analysis, we describe the EdDSA implemented in
wolfSSL-5.6.6, and we show how to leak the secret key
via both DFA and SCA.

Scheme pp sp
BB short h m q,g1,g2 s
G-sign h m pk sk

Table 1: Classification of potentially vulnerable parameters
in BB short.

Gen(1λ): It generates a secret key (k,s) and a public key
(P,B). In sk, k is used for hashing and s is generated by k.
In pk, P is a curve point, and B is an ed25519 base point.
Particularly, pk can be viewed as pk = (P,B). Regarding sk,
it is defined as sk = (s,k). pk and sk satisfy P = sB and s =
H(k).
Sign(pk,sk,m): It takes pk,sk and m as inputs, utilizes H as
hash function and generates a signature (R,σ) by computing
r = H(k||m),R = rB,h = H(R||P||m), and σ = r+hs.
Vrfy(pk,m,σ): It takes a signature σ and m, pk = (P,B) as
inputs, and generates 1 if the following equation holds:

σB = R+hP (4)

Parameters in EdDSA can also be parsed as shown in Ta-
ble 2. By faulting pp and sp, we find that EdDSA is vulnera-
ble to both DFA and SCA.

Scheme pp sp
EdDSA h m P,B r,R s
G-sign h m pk r sk

Table 2: Classification of potentially vulnerable parameters
in EdDSA.

Faulting public parameters with DFA: In EdDSA, R,P,M,h
can be viewed as public parameters. When a single fault
occurs in h, a differential analysis can result in the secret key
s: σ′ = r+h′s. By combining the faulty signature with a valid
one:

σ−σ
′ = (h−h′)s, (5)

s can be computed as s = (σ−σ′) · (h− h′)−1. Here h− h′

can be regarded as g(pp) which satisfies the expression of
DFA. Because R,P,m all serve as input for computing h =
H(R||P||m), we conclude that faulting these parameters can
also yield a secret key.
Faulting secret parameters with SCA: When a single bit
flip occurs to s when the Sign (m, pk,sk) function is invoked,
the generated signature will become σ′= r+hs′, where (R,S′)
is a faulty signature caused by a faulty secret key s′.

Here, we denote s′ as s+∆s where ∆s represents the in-
jected fault. To make Equation 4 hold, ∆s and g(pp,∆) must
satisfy the following equation:

σ
′B = R+h(P+∆sB) (6)

where g(pp,∆) = ∆sB. When Equation 6 holds, we are able
to find out the index of the bit flipped in s and thus recover its
original bit.

Finally, to recover the remaining bits, we represent the
secret key as x = x(k) + x(w), compute P′ = P− s(k)B and
define the hash function for algorithm 3 as HP(r1,r2) = r1B+
r2P′. It is simple to verify that when a collision Hp(r1,r2) =

Hp(r′1,r
′
2) is found, we can compute x(w) as (r1− r′1) · (r′2−

r1)
−1.

5.3 Identifying potentially vulnerable parame-
ters automatically

The analysis described in Section 5.1 and Section 5.2 is per-
formed manually. To accelerate the analysis and enable the
automated identification of parameters’ vulnerabilities, we
have developed a Python program called AutoVuln. This pro-
gram is designed to automatically identify potentially vulner-
able parameters in a given signature scheme by leveraging
mathematical symbols from the Python symbolic computation
library sympy.

We assume that the program’s users are either attackers
or crypto-library developers seeking to analyze a scheme’s
vulnerability to Rowhammer efficiently. Accordingly, users
are expected to have knowledge of the target scheme and must
provide specific inputs about the scheme to the program for
automatic analysis.
Inputs to AutoVuln: The format of AutoVuln invocation
is as follows: ./AutoVuln -pk_list=[] -sk_list=[] -h_list=[]
-m_list=[] -r_list=[] -sign_list=[] -vrfy_list=[]. The program
requires seven inputs. The first five inputs are five lists of
parameters in the scheme mapped to (pk,sk,h,m,r) in G-sign.
Thus, a program user must manually translate the scheme’s im-
plementation into the G-sign format, establishing a mapping
between the scheme’s parameters and the G-sign parameters.
Examples of the mapping can be found in Table 1 and Table 2.

The sixth input is a list of relations among the scheme’s
mapped parameters during the signature generation. For
instance, in EdDSA, these relations include σ=r+h*s,
R=r*B and P=s*B. The final input is a list of relations
among the parameters when verifying the signature. For
EdDSA, it would be σ*B=R+h*P. When analysing Ed-
DSA, the provided inputs would be: -pk=[P,B,R] -sk=[s]
-h=[h] -m=[m] -r=[r] -sign_list=[σ=r+h*s,P=s*B,R=r*B]
-vrfy_list=[σ*B=R+h*P].
AutoVuln: With all the inputs, the program performs the
three following steps.
• Pre-processing. In this step, the program converts the

first five input lists (treated as strings) into sympy sym-
bols and organizes them into corresponding symbol
lists: pk_sym_list, sk_sym_list, h_sym_list, m_sym_list,
and r_sym_list. Next, the program processes the equa-
tions in the last two input lists (sign_list and vrfy_list).
Each equation is parsed into two expressions. For in-
stance, the equation σ=r+h*s is split into left_expr(σ)
and right_expr(r+h∗ s). The program then uses the built-
in sympy function Eq(left_expr, right_expr) to generate a

symbolized equation. These equations are stored in either
sign_sym_list or vrfy_sym_list, depending on their source.

• Analysing Public Parameters (pp). In this step, the pro-
gram performs DFA on each public parameter. For every
parameter in pk_sym_list, h_sym_list, and m_sym_list, a
new symbol f p is defined to represent a faulty version of
the parameter. The program substitutes f p for the original
parameter in the equations from sign_sym_list, producing
a faulty signature expression. By applying symbolic ex-
traction, the program relates the correct signature to the
faulty signature, resulting in an expanded expression. For
example, in EdDSA, if h is faulted, the substitution h→ f p
modifies the signature equation to σ=r+fp*s. Symbolic
extraction yields: σ-σ′=(h-fp)*s. The program then checks
whether all coefficients of the secret key are public param-
eters. If this condition is met (as in Line 7 of algorithm 1),
the parameter is flagged as potentially vulnerable. In the
case of EdDSA, the coefficient of s is h-fp, which is public.
Thus, h is identified as a potentially vulnerable parameter.

• Analysing Secret Parameters (sp). In this step, the program
performs SCA on each secret parameter. For every parame-
ter in sk_sym_list and r_sym_list, the program introduces
a new symbol d f , representing a fault. This creates a sym-
bolic expression for the parameter, such as s+df in EdDSA,
which is substituted into the equations in sign_sym_list to
generate a faulty signature equation. For example, in Ed-
DSA, faulting s leads to the new expression s+df, modify-
ing the signature equation to σ=r+h*(s+df). The program
extracts the coefficients of d f and checks if they are public.
If so, the coefficients with d f can be subtracted from the
faulty equation, allowing it to pass all the verification equa-
tions from vrfy_sym_list (satisfying Line 9 of algorithm 2).
In the EdDSA example, since h is public, the term h*df
can be subtracted, resulting in successful verification. As
such, s is identified as a potentially vulnerable parameter.

Execution Results: The size of AutoVuln is 3.25 KB,
and it has been evaluated against multiple cryptographic
schemes, including BB short in relic-toolkit-0.6.0,
EdDSA and RSA in wolfSSL-5.6.6, ML-DSA in
liboqs-0.10.0, ElGamal in cryptopp-8.9, and BLS
in bls-signatures-2.0.3. The results are summarized
in Table 3. Execution for each scheme is efficient, completing
in under 100 ms. Furthermore, the identified potentially
vulnerable parameters align with the results from our manual
analysis for BB short, EdDSA, and in Section 5.1 and
Section 5.2, as well as for ML-DSA, Elgamal, RSA, and BLS
in Appendix A.

6 Evaluation

After identifying potentially vulnerable parameters in each
scheme in Section 5, we now exploit Rowhammer to validate
which parameter will lead to the recovery of the secret key.

Scheme Library Time
Identified Potentially
Vulnerable Parameter
pk h m sk r

BB short relic-toolkit-0.6.0 64.0 ms s
EdDSA wolfSSL-5.6.6 75.2 ms R,P h m s

ML-DSA liboqs-0.10.0 85.0 ms µ,w c m s1
Elgmal cryptopp-8.9 66.9 ms x k
RSA wolfSSL-5.6.6 54.5 ms s
BLS bls-signatures-2.0.3 52.2 ms x

Table 3: The execution time and potentially vulnerable param-
eters identified automatically by AutoVuln.

There are three main steps to achieve this as follows.
In the first step of profiling memory, we profile the physical

memory allocated to the attacker, aiming to collect sufficient
victim pages that contain Rowhammer bit-flips. In the second
step of faulting targeted parameter, the attacker, co-located
with the victim on the same system, tricks the system into
using a victim page to store targeted parameters and then
induces bit flips during signature generation. In the last step
of recovering secret key, we respectively utilize DFA and SCA
with SCARA to recover the secret.

In this section, we focus on faulting d in BB short,
s,R,P,m,h in EdDSA and c,s1,µ,w in ML-DSA, respectively.
For each parameter, we will repeat the last two steps above.

6.1 Experimental Setup
We perform the experiments using a machine with In-
tel Core i3-10100 CPU (IceLake) and two Apacer DDR4-
2666 8G DIMMs (part number: D12.2324WC.001). The
machine runs default Ubuntu 22.04 with Linux ker-
nel 6.1.66. The signature codes belong to recent popu-
lar libraries relic-toolkit-0.6.0, wolfssl-5.6.6, and
liboqs-0.10.0. For BB short, we use the Weiling bilinear
pairing and secp224r1, a.k.a, NIST P-224 elliptic curve. The
secret key d has 224 bits. For EdDSA, we use a twisted Ed-
wards curve where its order q is 2255−19, a.k.a, curve25519.
The secret key s in EdDSA is 256 bits. For ML-DSA, we use
the parameter set ML-DSA-44 where the secret key has 256
coefficients, and each coefficient ranges from -2 to 2.

6.2 Profiling Memory
In the attack process, we profile 12 GB of physical memory to
identify sufficient victim pages containing bits susceptible to
Rowhammer, along with their corresponding aggressor pages.
To achieve this, it’s crucial to know the mapping between
a virtual address (VA) and a physical address (PA), as the
physical address bits determine the DRAM bank and row.
However, the OS kernel conceals the physical addresses from
any unprivileged process, including the attacker.

To address this issue, we obtain 2 MB of contiguous mem-
ory blocks [45, 46] by leveraging the deterministic behaviour
of the buddy allocator. In a 2 MB physical memory block,

a VA shares the least significant 21 bits with its correspond-
ing PA. Based on prior work [36, 37], many x86 processors
with different microarchitectures use these 21 bits in a PA
to determine the corresponding DRAM bank. Therefore, we
check whether the two VAs are in the same bank. Addition-
ally, since the size of a DRAM row is much smaller than a 2
MB hugepage, we can determine whether two given VAs are
in two adjacent rows.

To this end, we first use DRAMDig [37] to reverse
engineer the DRAM address function of the machine.
The results show that the bank index is determined
by bit-wise operations against physical address bits of
(17,21),(16,20),(15,19),(14,18),(6,13), while the row in-
dex is determined directly by bits 18 to 33. Therefore, we
have 32 banks decided by the five pairs of address bits and
216 rows in a bank with each row of 218 bytes, confirming
that we can use a VA to decide its DRAM bank and whether
two VAs are in the same row.

Next, we obtain 2 MB memory blocks as follows: we
exhaust small free memory blocks (no greater than 2 MB)
by using the mmap system call with the MAP_POPULATE flag.
We then send memory requests of 2 MB via mmap to trick
the kernel into splitting memory blocks of 4 MB, receiving
multiple memory blocks of 2 MB where VAs and PAs have
the same lowest 21 bits.

Last, we use TRRespass3 to find an effective hammer pat-
tern against the DIMMs. This refers to the number of aggres-
sor rows that are needed to trigger bit flips. As our DIMMs
are DDR4 modules and can be protected by target row re-
fresh (TRR) [47], TRRespass can bypass TRR and return the
expected hammer pattern for inducing bit flips. The results
show that a double-sided hammer can trigger reproducible bit
flips. With the identified hammer pattern, we start our ham-
mering attempts to profile the memory within the process.
Each hammering attempt is a finite loop of hammering the
4 pairs of virtual pages, with each pair hammered 250,000
rounds. After each hammering attempt, we scan other unham-
mered memory for bit flips. By doing so, we collect a set of
victim pages with their paired aggressor pages. The page off-
set of a single-bit flip can differ in the collected victim pages.
Figure 4 shows the distribution of bit-flip offsets accumulated
over 4 KB-aligned pages.

6.3 Faulting Targeted Parameter

With the profiled memory, we release vulnerable pages back
to the OS kernel and coerce it into reusing these pages to
host targeted parameter, so-called memory massaging [46, 48,
49]. In our case, the pages have flippable bits that have the
same 4 KB-page offset as the targeted parameter in the victim
process (Note that for each parameter in a library binary, their
offset within the page remains consistent, even though the

3https://github.com/vusec/trrespass

(a) (b)

Figure 4: The distribution of flippable-bit offsets over 4 KB-
aligned pages. Bit flips from 1 to 0 (blue) and bit flips from 0
to 1 (red) accumulated over 4 KB pages.

base address of the virtual page where the parameter resides
is randomized by address space layout randomization).

Particularly, we exploit the predictable behavior of the
Linux Buddy Allocator, which allocates recently unmapped
physical pages on the page frame cache (per-cpu pageset)
in a first-in-last-out (FILO) order. Therefore, we unmap spe-
cific victim pages via mmap and trigger the victim process into
using one of the unmapped pages to load the parameter.

The last step is to induce bit flips to all the pages, with one
of them causing a fault to the parameter. However, the fault
must occur in a limited time window between a parameter’s
initiation and its subsequent use in computations. If a bit flip
occurs outside the window, it can either disrupt the signing
process or render itself ineffective for recovering the secret
key.

To address this issue, we opt for OS signals. Specifically,
the attacker process running on one core registers a signal
handler and then triggers the victim signing process on an-
other core. In the meantime, the attacker sets up a timer by
using an unprivileged high-resolution timer (e.g., rdtsc) to
clock the time of the signing process. Upon the completion of
a target parameter’s initialization, the attacker process sends
the registered signal to trick the OS kernel into switching
the victim process off the core, extending the window. If the
time window is small, the victim process can be switched off
frequently.

6.4 Serect Key Recovery
After faulting a targeted parameter and receiving sufficient
signatures, we use either DFA or SCA with SCARA to recover
the secret key in each scheme.
Recovering the secret bits via DFA: When a public parame-
ter is faulted, only one faulty signature is needed to recover
the secret key. In EdDSA, fe_inv, fe_mul and fe_add func-
tions defined in fe_low_mem.c are to perform field and curve
operations. They are used to compute the secret key. With the
operations and exploitable signature after faulting P and m,
respectively, we have recovered the secret key. In ML-DSA,
c is a ring polynomial, and we use poly_invntt_tomont,
poly_add and poly_sub functions defined in poly.c to com-

Figure 5: The number of recovered bits in 15 hours for the
secret key in BB short and EdDSA is represented in the form
of pixels, where white cells indicate recovered bits, and black
cells indicate non-recovered bits.

pute the secret key. With the operations and exploitable signa-
ture after faulting c, we have recovered the secret key.
Recovering secret bits via SCA: When a private parameter
is faulted, hundreds of unique faulty signatures are required
(depending on the bit length of the secret key). Figure 5
shows the number of secret bits that have been recovered in
15 hours via SCA in BB short and EdDSA. Specifically, in
BB short, we have recovered 78 unique bits using 631 faulty
signatures out of a total of 1822. In EdDSA we have leaked
85 unique secret bits using 834 faulty signatures out of 4120
in total.

In ML-DSA, the secret key s1 is defined as a 4-dimensional
vector consisting of s(1)1 ,s(2)1 ,s(3)1 ,s(4)1 . Each element in the
vector is a polynomial of 256 degrees with coefficients in the
range of [−2,2]. Each coefficient is stored as an int32_t,
but only the 3 LSBs represent useful values, while the other
29 bits serve only as a positive or negative flag. There are
5 possible values for three LSBs: 110,111,000,001,010. In
our experiments, we observe that if a fault occurs in the 16
MSBs of a coefficient, the rejection condition in line 18 in
algorithm 5 terminates with high probability. If a fault occurs
in bits 3 through 15, the recovered information is redundant,
as these bits are the same as the third LSB.

Since we could not find exploitable bit flips in the 3 LSBs of
our evaluated Apacer DDR4 DIMMs, we instead used a more
vulnerable Samsung DDR3-1300 4G DIMM (part number:
M473B5273DH0-YK0) deployed in a Lenovo T420 equipped
with Intel Core i5-2430M CPU (Sandy Bridge). This ma-
chine operates on the same OS and kernel as the previously
evaluated DDR4-based machine. Using DRAMDig [37], we
reverse-engineered the DRAM address mapping of this ma-
chine. The results reveal that the bank index is determined by
the physical address bits (16,20),(15,19),(14,18),(13,17),
while the row index is derived from bits 17 to 31. Within 6
hours of double-sided hammering on 0.6 GB of the DDR3

memory, we observed 1034 bit flips from 1 to 0 and 1339
from 0 to 1. Based on the profiling results, we successfully
induced faults in the 3 LSBs of s1, recovering 38 unique bits
in 12 hours.
SCARA: Table 4 presents a comparison of brute-force,
Jolt [22], and SCARA with respect to their memory and time
overhead when recovering 55 remaining secret bits in BB
short and EdDSA. While brute-force fails in the recovery for
each scheme, SCARA only utilizes 0.65% memory of Jolt’s [22]
on average. The reason EdDSA requires more memory and
time than BB short is that its elements curve are larger,
and the operations are slower on the secp256r1 curve than
secp192r1 curve in BB short. SCARA is unsuitable for ML-
DSA because the secret key is stored in a large array con-
taining 32,768 bits (4096 × 8), which significantly exceeds
SCARA’s capacity.

BB short EdDSA

Memory (MB) Time (s) Memory (MB) Time (s)

brute-force 21.4 timeout 21.7 timeout
Jolt [22] 5810.2 960.5 7240.5 1201.1
SCARA 21.6 770.4 21.8 1160.2

Table 4: The memory and time overhead when recovering
the remaining secret bits using brute-force, Jolt [22] and our
SCARA, respectively.

7 Countermeasures

In this section, we first discuss specific solutions to mitigate
fault-injection attacks against signature schemes. We then talk
about general strategies to counteract Rowhammer.

7.1 Mitigating Faults on Signature Schemes
Leakage resilient cryptographic schemes: Assuming a
small number of bits in sp that can be leaked via faults or
side channels, some works have proposed new cryptographic
primitives that are proven to be secure against a full leak of
sk. Specifically, these primitives define a relatively long sk
and establish a leakage threshold based on its length. Even
if some bits of sk below this threshold are leaked, the entire
sk remains secure against SCA. However, these primitives
remain vulnerable to DFA, which requires only a single correct
signature and a faulty one. The proposed primitives include
signature schemes [50, 51], key encapsulation [52, 53], and
secret sharing protocols [54].
Verifying after signing: When a fault occurs in either pp
or sp, a faulty signature will be generated. Considering that
verifying shown in Figure 1 can detect the fault by rejecting
the faulty signature, the cryptographic library developer can
append it right after signing. However, it can be bypassed if
another fault occurs to specific verifying implementation [16].
Besides, verifying can incur significant overhead to signing.

Redundancy check: The redundancy check includes tempo-
ral and spatial redundancy check [24]. A temporal redundancy
check involves re-executing signing and comparing the result-
ing signatures. If the signatures differ, a Rowhammer fault
can be detected. However, this check can be bypassed if the
fault occurs in all signatures, as Rowhammer induces a perma-
nent fault. A spatial redundancy check stores multiple copies
of the same secret parameters in randomly selected DRAM
locations and compares them at the end of the signing. If the
copies differ, a Rowhammer fault is detected. We proposed
this check in EdDSA, and it has been adopted by wolfssl as
an official patch.

In Section 7.3, we have demonstrated that both verifying-
after-signing and redundancy check implemented by wolfssl
are insufficiently secure against Rowhammer attacks.

7.2 Mitigating Rowhammer Attacks

RowHammer defenses can generally be categorized into
hardware-based and software-only approaches (we refer the
reader to [55] for more details.). Many hardware-based so-
lutions [20, 56, 57] have been proposed in academia to
strengthen DRAM and mitigate RowHammer-induced bit
flips. These solutions require hardware modifications and
have yet to be adopted in the industry due to cost and com-
plexity. For industrially hardened DRAM modules such as
DDR4 and DDR5, they have been shown to remain vulnerable
to RowHammer attacks.

For instance, ECC DRAM can detect or correct bit flips
in memory, providing effective mitigation but not complete
immunity against RowHammer. ECCploit [40] demonstrated
that RowHammer-induced bit flips persist even with ECC
DRAM. Besides, ECC DRAM is predominantly used in
servers and workstations and is rarely used in consumer PCs.
Another widely used solution is TRR DRAM. It tracks row ac-
tivations and refreshes adjacent rows when activation counts
reach a pre-defined threshold, suppressing bit flips. However,
TRR DRAM has also proven unable to eliminate RowHam-
mer [38, 39, 58]. While these industrial solutions cannot
fully eliminate RowHammer, they can influence the num-
ber and locations of bit flips in DRAM. This reduces the
likelihood of attackers finding sufficient vulnerable locations
to exploit RowHammer for targeting parameters identified
by Achilles. Some types of RAM inherently avoid the root
cause of RowHammer: electrical interference between adja-
cent cells caused by charge storage. For example, magnetic
RAM (MRAM) stores data using magnetic states rather than
electrical charges, rendering it immune to RowHammer. How-
ever, MRAM adoption remains limited and primarily confined
to niche applications.

Unlike them, software-only solutions [59, 60, 61, 62, 63]
require no hardware modifications, making them compati-
ble with legacy hardware, including DDR3. One effective
approach involves increasing the refresh rate of DRAM cells

to suppress RowHammer-induced bit flips. For example,
computer manufacturers such as Lenovo [64] have updated
firmware to reduce the refresh period of DDR3 modules from
64 ms to 32 ms. While this significantly reduces RowHam-
mer bit flips, it also impacts OS performance. Moreover,
RowHammer-induced bit flips persist even with the reduced
refresh period [59], making this approach cost-ineffective.
Some software-based solutions [60, 61, 62, 63] do not at-
tempt to suppress RowHammer. Instead, they mitigate its ex-
ploitation by preventing sensitive data or code (e.g., targeted
parameters in Section 6.3) from being placed onto vulnera-
ble rows. These solutions typically modify the OS memory
allocator to enforce DRAM-aware memory isolation between
software entities. The relevant example is RIP-RH [62], which
isolates DRAM rows allocated to different processes by insert-
ing guard rows in between. This prevents an attacker process
from faulting key parameters or opcodes in a victim process,
thus effectively mitigating our Rowhammer attacks. However,
all these solutions fail to account for bit flips occurring more
than 6 rows away from the hammered rows [65].

7.3 Serect Key Recovery from Hardened Sig-
nature Implementations

In this section, we target wolfSSL-5.7.4, which implements
verifying-after-signing to harden RSA and a redundancy check
to harden EdDSA. These hardened implementations are de-
signed to detect the generation of faulty signatures. If a fault
is detected, the signature scheme aborts, thereby mitigating
Rowhammer attacks against key parameters. However, we
demonstrate that both mitigations can be circumvented by
faulting their respective critical instructions. Once the bypass
is achieved, a targeted parameter can be faulted to recover the
secret key (as detailed in Section 6.3). Below, we discuss the
location of these critical instructions and the technique for
faulting them in RSA and EdDSA.
RSA with verifying-after-signing: The verifying-after-
signing mitigation is implemented in C as a macro named
WOLFSSL_CHECK_SIG_FAULTS. This macro verifies a gener-
ated signature and returns the verification result in the ret
variable. After executing the macro, RSA uses an IF condi-
tion to check the value of ret. If ret is not 0, the signature
is deemed faulty, and the execution aborts. Otherwise, the
execution continues.

By analyzing the compiled binary of RSA, we observe
that the IF condition involves a CMP instruction and a JE
instruction. The CMP instruction compares ret with 0. If ret
equals 0, the JE (jump if equal) instruction directs execution
to a specific location for continuation. Otherwise, the jump is
not taken, and the execution aborts.

The JE instruction is a short jump with the opcode 0x74.
If this opcode is faulted to 0x75 through a single-bit flip, the
instruction changes to JNE (jump if not equal). This modifica-
tion causes execution to continue even when the signature is

faulty, effectively bypassing verifying-after-signing. Conse-
quently, we target the JE instruction for fault injection.
EdDSA with redundancy check: For EdDSA with redun-
dancy checks, a similar mitigation is implemented using the
macro WOLFSSL_EDDSA_CHECK_PRIV_ON_SIGN. This macro
compares two arrays containing copies of the same secret key
after the signing procedure. The result of the comparison is
stored in the ret variable, which is returned. An IF condition
then checks the value of ret. If ret equals 0, indicating the
arrays are identical, the execution continues. Otherwise, the
execution aborts.

Unlike RSA, the IF condition for EdDSA uses a CMP instruc-
tion and a JNE (jump if not equal) instruction. When a fault
occurs in the secret key, ret is not 0, and the JNE instruction
triggers a jump to abort execution. The JNE instruction is also
a short jump with the opcode 0x75. If this opcode is faulted
to 0x74 via a bit flip, the instruction changes to JE (jump if
equal). This prevents the jump from being taken when the
key is faulted, thereby bypassing the redundancy check. We
note that while faulting the targeted opcode bypasses the mit-
igation, the corresponding signature scheme will abort if its
secret parameter is not faulted.
Faulting Targeted Opcode: To fault the targeted opcode in
RSA and EdDSA, we employ the memory massaging tech-
nique discussed in Section 6.3 to manipulate the OS into
reusing a vulnerable page to host the targeted opcode. The
vulnerable page, collected in Section 6.2, must contain a flip-
pable bit that corresponds to the same 4 KB-page offset as
the bit to be faulted in the targeted opcode. For RSA, we ran
1000 trials and succeeded on the 676th attempt by faulting the
targeted opcode. Subsequently, we faulted its 1024-bit secret
key d. In total, we obtained 861 faulty signatures in 8 hours
and recovered 65 unique bits from them. For EdDSA, we also
conducted 1000 trials and succeeded on the 908th attempt
by faulting the targeted opcode. Following this, we faulted
its 256-bit secret key s, resulting in 679 faulty signatures in
8 hours. From these signatures, 35 unique secret bits were
successfully recovered.

8 Discussion

In this section, we discuss the limitations of our work and
compare it with prior works on physical fault injection.

8.1 Limitations
Currently, Achilles models standardized signature schemes,
including traditional and post-quantum schemes. Non-
standardized signature schemes (e.g., threshold signa-
tures [66] and ring signatures [67]), are excluded due to their
unique characteristics. These schemes assume multiple sign-
ers and their signing queries are not modelled by G-sign.
Extending Achilles to include non-standardized signature
schemes will be valuable.

Besides, signature schemes exhibit varying levels of ro-
bustness against post-Rowhammer analysis. Schemes with
longer secret keys are more resilient to SCA, as a longer key
requires faults in more bits for a full recovery. However, these
schemes, regardless of the key length, remain vulnerable to
DFA, which derives the secret key by comparing a valid and a
faulty signature and is unaffected by the key length.

Last, the demonstrated Rowhammer attacks are limited
to the Linux environment, where predictable behaviours of
Linux signal mechanisms and Buddy Allocator are abused.
The evaluated DDR4 DIMMs are vulnerable to Rowhammer:
bit flips from 1 to 0 or vice versa, can occur at most page
offsets as shown in Figure 4.

8.2 Physical fault injection

There are numerous physical techniques for injecting faults,
with optical radiation, clock glitches, voltage glitches, elec-
tromagnetic interference (EM), and heating being prominent
examples [68]. Optical radiation employs a range of optical
methods, such as laser beams [69], focused ion beams [70],
X-rays [71], and flashes [72], to target specific areas of a de-
vice and disrupt its normal operations. Clock glitches [73]
and voltage glitches [74] manipulate a device’s clock and
voltage signals, respectively, to induce faults that can result
in malfunctions or unintended behavior. EM [75] involves
using electromagnetic pulses to disrupt a device’s circuitry,
inducing faults in its operation. Heating [76] intentionally
raises the temperature of specific device components, causing
circuit malfunctions.

Physical fault-injection techniques can generally be catego-
rized into invasive (e.g., optical radiation) and non-invasive
methods (e.g., clock/voltage glitches, electromagnetic interfer-
ence, and heating). Invasive techniques require direct physical
access to a device’s internal structure to induce faults, while
non-invasive ones induce faults by manipulating the device’s
external environments. We now compare these fault-injection
techniques with our Rowhammer attacks as follows.
Targeted device: Physical fault-injection techniques require
proximity or direct access to the targeted device, along with
specialized and costly equipment, making them well-suited
for embedded systems such as FPGA SoCs and smart cards.
In contrast, Rowhammer represents a software-induced, non-
invasive fault injection approach that is cost-effective. It
specifically targets DRAM modules commonly found in
consumer-grade and server-grade platforms, making it espe-
cially relevant in scenarios such as multi-process commodity
operating systems or multi-tenant public clouds.
Spatial and temporal precision: Optical radiation tech-
niques provide high spatial and moderate temporal precision
for inducing faults [68]. For instance, laser beam utilizes con-
trol devices like digital oscilloscopes to pinpoint targets at
the bit level. While the timing of the fault can be partially
controlled due to the speed and accuracy of optical radiation,

these techniques are unsuitable for Achilles. This is because
certain key parameters in the signing process must be faulted
within a narrow time window, which optical radiation cannot
reliably detect or control. Instead, optical radiation techniques
are typically applied to tasks like instruction skipping [77],
which can be executed after the process has been loaded.

EM provides moderate spatial and temporal precision. It
typically requires a motorized positioning table, a signal gen-
eration module, and an oscilloscope to ensure precise control
over the fault location and timing. While EM is less accurate
than optical radiation techniques due to the diffused nature
of electromagnetic fields, it can still achieve single bit-flip
faults [78]. The timing for inducing faults is comparable to
that of optical radiation.

Clock and voltage glitches exhibit low spatial precision
and moderate temporal precision. These techniques induce
faults at the circuit level by disrupting input signals, leading
to imprecise fault localization and causing multi-bit errors.
Similarly, heating offers low spatial and temporal precision,
as neither the specific fault location nor the fault timing can be
controlled with fine granularity. Consequently, these methods
are unsuitable for Achilles, which requires precise bit-level
granularity and timing for inducing single-bit faults.

Unlike these methods, our Rowhammer attack, as discussed
in Section 6, achieves high spatial precision by doing mem-
ory profiling and memory massaging. It advances existing
Rowhammer attacks by leveraging Linux OS signals to over-
come the challenge of the limited time window for fault injec-
tion, resulting in high temporal precision. Therefore, Achilles
is uniquely powered by Rowhammer, rendering none of the
aforementioned physical fault injection techniques applicable
to Achilles.

9 Conclusion and Future Work

In this paper, we presented a formal framework, coined as
Achilles, that describes a formal procedure to induce Rowham-
mer faults to a generalized signature scheme and perform a
post-Rowhammer analysis for secret recovery. With Achilles,
potentially vulnerable parameters in real-world signature
schemes have been found. To validate their vulnerability, we
perform Rowhammer attacks against the signature schemes
and recover their secrets via DFA and SCA with SCARA.

Achilles specializes in signature schemes, which allow ad-
versaries to submit multiple signing queries, with the resulting
signatures being publicly available. This public accessibility
makes such schemes vulnerable to fault-based secret recovery.
Expanding Achilles to include non-standardized signature
schemes and other cryptographic primitives, such as encryp-
tion and key agreement, would be valuable for uncovering
and fixing more vulnerable schemes.

10 Ethics Statements and Open Science Policy
Compliance

Ethics statements: In this paper, our case study and evalua-
tion involve real-world attacks on cryptographic open-source
projects. We have made disclosures to all the vendors that our
attack would have influenced and we have provided counter-
measures. We have collaborated with wolfssl security team
to deploy patches in their library. Other libraries claim that
fault injection is currently not part of their security model and
have a notification for the users in their disclaimers. As our
attack targets general signature schemes, there may be nega-
tive potential outcomes in other systems that use a signature
scheme. We have discussed various countermeasures that can
be used by real-world applications to mitigate the vulnerabil-
ity. We hope this work raises awareness about Rowhammer
fault injection when implementing and/or deploying crypto-
graphic schemes and motivates the community to apply more
corresponding countermeasures for Rowhammer attacks.
Open policy: We are dedicated to upholding the values of
the Open Science Policy and strive to encourage transparency,
reproducibility, and collaboration in scientific research. We
release our artifacts including the source code and demos at
https://doi.org/10.5281/zenodo.14735639 as per the
conference’s requirements.

References

[1] Chris M. Lonvick and Tatu Ylonen. The Secure Shell
(SSH) Protocol Architecture. RFC 4251, January 2006.

[2] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, 2018.

[3] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[4] Vitalik Buterin et al. Ethereum white paper. GitHub
repository, 1:22–23, 2013.

[5] Hitesh Dhall, Dolly Dhall, Sonia Batra, and Pooja Rani.
Implementation of ipsec protocol. In International Con-
ference on Advanced Computing & Communication
Technologies, pages 176–181, 2012.

[6] Craig Gentry. Certificate-based encryption and the cer-
tificate revocation problem. In International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pages 272–293. Springer, 2003.

[7] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, et al. The quic
transport protocol: Design and internet-scale deploy-
ment. In Proceedings of the conference of the ACM

https://doi.org/10.5281/zenodo.14735639

special interest group on data communication, pages
183–196, 2017.

[8] Jeremy Clark and Paul C Van Oorschot. Sok: Ssl and
https: Revisiting past challenges and evaluating certifi-
cate trust model enhancements. In IEEE Symposium on
Security and Privacy, pages 511–525, 2013.

[9] George Arnold Sullivan, Jackson Sippe, Nadia Heninger,
and Eric Wustrow. Open to a fault: On the passive
compromise of {TLS} keys via transient errors. In
USENIX Security Symposium, pages 233–250, 2022.

[10] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip Feng Shui:
Hammering a needle in the software stack. In USENIX
Security Symposium, pages 1–18, 2016.

[11] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan
Custodio, Thomas Eisenbarth, and Berk Sunar. Jack-
hammer: Efficient rowhammer on heterogeneous fpga-
cpu platforms. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020.

[12] Damian Poddebniak, Juraj Somorovsky, Sebastian
Schinzel, Manfred Lochter, and Paul Rösler. Attack-
ing deterministic signature schemes using fault attacks.
In IEEE European Symposium on Security and Privacy,
pages 338–352, 2018.

[13] Sarani Bhattacharya and Debdeep Mukhopadhyay. Cu-
rious case of rowhammer: flipping secret exponent bits
using timing analysis. In Cryptographic Hardware and
Embedded Systems, pages 602–624, 2016.

[14] Keegan Ryan. Hardware-backed heist: Extracting ecdsa
keys from qualcomm’s trustzone. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 181–194, 2019.

[15] Weiqiong Cao, Hongsong Shi, Hua Chen, Jiazhe Chen,
Limin Fan, and Wenling Wu. Lattice-based fault attacks
on deterministic signature schemes of ecdsa and eddsa.
In Cryptographers’ Track at the RSA Conference, pages
169–195. Springer, 2022.

[16] Puja Mondal, Suparna Kundu, Sarani Bhattacharya,
Angshuman Karmakar, and Ingrid Verbauwhede. A
practical key-recovery attack on lwe-based key-
encapsulation mechanism schemes using rowhammer.
arXiv preprint arXiv:2311.08027, 2023.

[17] Gabrielle De Micheli and Nadia Heninger. Recovering
cryptographic keys from partial information, by exam-
ple. Cryptology ePrint Archive, 2020.

[18] Dan Boneh, Richard A DeMillo, and Richard J Lipton.
On the importance of checking cryptographic protocols

for faults. In International conference on the theory and
applications of cryptographic techniques, pages 37–51.
Springer, 1997.

[19] Michael Fahr Jr, Hunter Kippen, Andrew Kwong,
Thinh Dang, Jacob Lichtinger, Dana Dachman-Soled,
Daniel Genkin, Alexander Nelson, Ray Perlner, Arkady
Yerukhimovich, et al. When frodo flips: End-to-end key
recovery on frodokem via rowhammer. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 979–993, 2022.

[20] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: an experimental study of DRAM distur-
bance errors. In International Symposium on Computer
Architecture, pages 361–372, 2014.

[21] Dan Boneh, Richard A DeMillo, and Richard J Lipton.
On the importance of eliminating errors in cryptographic
computations. Journal of cryptology, 14:101–119, 2001.

[22] Koksal Mus, Yarkın Doröz, M Caner Tol, Kristi Rahman,
and Berk Sunar. Jolt: Recovering tls signing keys via
rowhammer faults. In IEEE Symposium on Security and
Privacy, pages 1719–1736. IEEE, 2023.

[23] Koksal Mus, Saad Islam, and Berk Sunar. Quantumham-
mer: a practical hybrid attack on the luov signature
scheme. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1071–1084, 2020.

[24] Saad Islam, Koksal Mus, Richa Singh, Patrick Schau-
mont, and Berk Sunar. Signature correction attack on
dilithium signature scheme. In IEEE European Sympo-
sium on Security and Privacy, pages 647–663, 2022.

[25] Nguyen and Shparlinski. The insecurity of the digital
signature algorithm with partially known nonces. Jour-
nal of Cryptology, 15:151–176, 2002.

[26] Samuel Weiser, David Schrammel, Lukas Bodner, and
Raphael Spreitzer. Big numbers-big troubles: System-
atically analyzing nonce leakage in ({EC) DSA} im-
plementations. In USENIX Security Symposium, pages
1767–1784, 2020.

[27] Dan Boneh and Xavier Boyen. Short signatures with-
out random oracles and the sdh assumption in bilinear
groups. Journal of cryptology, 21(2):149–177, 2008.

[28] Thomas Pornin. Deterministic usage of the digital signa-
ture algorithm (dsa) and elliptic curve digital signature
algorithm (ecdsa). Technical report, 2013.

[29] National Institute of Standards and Technology. Module-
lattice-based digital signature standard. Technical report,
U.S. Department of Commerce, 2023.

[30] Evgeny Milanov. The rsa algorithm. RSA laboratories,
pages 1–11, 2009.

[31] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE trans-
actions on information theory, 31(4):469–472, 1985.

[32] Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In International
Workshop on Public Key Cryptography, pages 31–46.
Springer, 2002.

[33] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and
Nadia Heninger. {TPM-FAIL}:{TPM} meets timing
and lattice attacks. In USENIX Security Symposium,
pages 2057–2073, 2020.

[34] Keegan Ryan. Return of the hidden number problem.: A
widespread and novel key extraction attack on ecdsa and
dsa. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 146–168, 2019.

[35] Chihun Song, Michael Jaemin Kim, Tianchen Wang,
Houxiang Ji, Jinghan Huang, Ipoom Jeong, Jaehyun
Park, Hwayong Nam, Minbok Wi, Jung Ho Ahn, et al.
Tarot: A cxl smartnic-based defense against multi-bit
errors by row-hammer attacks. In Proceedings of the
29th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 981–998, 2024.

[36] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM addressing for cross-CPU attacks. In USENIX
Security Symposium, pages 565–581, 2016.

[37] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya
Nepal. Dramdig: A knowledge-assisted tool to uncover
dram address mapping. In Design Automation Confer-
ence, 2020.

[38] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor
Van Der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. Trrespass: Exploiting the many
sides of target row refresh. In IEEE Symposium on
Security and Privacy, pages 747–762, 2020.

[39] Patrick Jattke, Max Wipfli, Flavien Solt, Michele
Marazzi, Matej Bölcskei, and Kaveh Razavi. ZenHam-
mer: Rowhammer attacks on AMD zen-based platforms.
In USENIX Security Symposium, 2024.

[40] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting correcting codes: on the effec-
tiveness of ECC memory against rowhammer attacks. In
IEEE Symposium on Security and Privacy, pages 55–71,
2019.

[41] Don Johnson, Alfred Menezes, and Scott Vanstone. The
elliptic curve digital signature algorithm (ecdsa). Inter-
national journal of information security, 1:36–63, 2001.

[42] Diego F Aranha, Claudio Orlandi, Akira Takahashi, and
Greg Zaverucha. Security of hedged fiat–shamir signa-
tures under fault attacks. In Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceed-
ings, Part I 39, pages 644–674, 2020.

[43] Marc Fischlin and Felix Günther. Modeling memory
faults in signature and authenticated encryption schemes.
In Topics in Cryptology–CT-RSA 2020: The Cryptog-
raphers’ Track at the RSA Conference 2020, San Fran-
cisco, CA, USA, February 24–28, 2020, Proceedings,
pages 56–84. Springer, 2020.

[44] Jeong Han Kim, Ravi Montenegro, and Prasad Tetali.
Near optimal bounds for collision in pollard rho for dis-
crete log. In Annual IEEE Symposium on Foundations
of Computer Science, pages 215–223, 2007.

[45] Yueqiang Cheng, Zhi Zhang, Surya Nepal, and Zhi
Wang. Cattmew: Defeating software-only physical ker-
nel isolation. IEEE Transactions on Dependable and
Secure Computing, 2019.

[46] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. RAMBleed: Reading bits in memory without
accessing them. In IEEE Symposium on Security and
Privacy, 2020.

[47] Micron, Inc. 8gb: x4, x8, x16 ddr4 sdram features-
excessive row activation. https://www.micron.com/
products/dram/ddr4-sdram, 2020.

[48] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic rowhammer attacks on mobile
platforms. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1675–1689, 2016.

[49] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another flip in the wall of
rowhammer defenses. In IEEE Symposium on Security
and Privacy, pages 245–261, 2018.

[50] Carmit Hazay, Muthuramakrishnan Venkitasubrama-
niam, and Mor Weiss. Zk-pcps from leakage-resilient
secret sharing. Journal of Cryptology, 35(4):23, 2022.

[51] Jianye Huang, Qiong Huang, and Willy Susilo. Leakage-
resilient group signature: Definitions and constructions.
Information Sciences, 509:119–132, 2020.

https://www.micron.com/products/dram/ddr4-sdram
https://www.micron.com/products/dram/ddr4-sdram

[52] Dana Dachman-Soled, S Dov Gordon, Feng-Hao Liu,
Adam O’Neill, and Hong-Sheng Zhou. Leakage-
resilient public-key encryption from obfuscation. In
Public-Key Cryptography, pages 101–128. 2016.

[53] Xin Li, Fermi Ma, Willy Quach, and Daniel Wichs.
Leakage-resilient key exchange and two-seed extrac-
tors. In Annual International Cryptology Conference,
pages 401–429, 2020.

[54] Nishanth Chandran, Bhavana Kanukurthi, Sai Lak-
shmi Bhavana Obbattu, and Sruthi Sekar. Short leakage
resilient and non-malleable secret sharing schemes. In
Annual International Cryptology Conference, pages 178–
207, 2022.

[55] Zhi Zhang, Decheng Cheng, Jiahao Qi, Yueqiang Cheng,
Shijie Jiang, Yiyang Lin, Yansong Gao, Surya Nepal,
Yi Zou, Jiliang Zhang, and Yang Xiang. SoK: Rowham-
mer on commodity operating systems. In Asia Confer-
ence on Computer and Communications Security, 2024.

[56] Michele Marazzi, Patrick Jattke, Solt Flavien, and Kaveh
Razavi. PROTRR: Principled yet optimal in-dram tar-
get row refresh. In IEEE Symposium on Security and
Privacy, 2022.

[57] Jonas Juffinger, Lukas Lamster, Andreas Kogler,
Maria Eichlseder, Moritz Lipp, and Daniel Gruss.
Csi: Rowhammer-cryptographic security and integrity
against rowhammer. In IEEE Symposium on Security
and Privacy, pages 236–252, 2023.

[58] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
rowhammering in the frequency domain. In IEEE Sym-
posium on Security and Privacy, 2022.

[59] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd Austin. ANVIL: Software-based protection
against next-generation rowhammer attacks. In Archi-
tectural Support for Programming Languages and Op-
erating Systems, pages 743–755, 2016.

[60] Ferdinand Brasser, Lucas Davi, David Gens, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. CAn’t Touch
This: Software-only mitigation against rowhammer at-
tacks targeting kernel memory. In USENIX Security
Symposium, 2017.

[61] Radhesh Krishnan Konoth, Marco Oliverio, Andrei
Tatar, Dennis Andriesse, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. ZebRAM: comprehensive and
compatible software protection against rowhammer at-
tacks. In Operating Systems Design and Implementation,
pages 697–710, 2018.

[62] Carsten Bock, Ferdinand Brasser, David Gens, Christo-
pher Liebchen, and Ahamd-Reza Sadeghi. RIP-RH: Pre-
venting rowhammer-based inter-process attacks. In Asia
Conference on Computer and Communications Security,
pages 561–572, 2019.

[63] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He,
Wenhao Wang, Nepal Surya, Yansong Gao, Kang Li, Zhe
Wang, and Chenggang Wu. Softtrr: Protect page tables
against rowhammer attacks using software-only target
row refresh. In USENIX Annual Technical Conference,
2022.

[64] LENOVO, Inc. Row hammer privilege esca-
lation lenovo security advisory: Len-2015-009.
https://support.lenovo.com/au/en/product_
security/row_hammer, Aug. 2015.

[65] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan
Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu.
Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques. In In-
ternational Symposium on Computer Architecture, 2020.

[66] Yehuda Lindell. Fast secure two-party ecdsa signing. In
Advances in Cryptology–CRYPTO 2017: 37th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 20–24, 2017, Proceedings, Part II 37,
pages 613–644, 2017.

[67] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon
Yuen. Ringct 2.0: A compact accumulator-based (link-
able ring signature) protocol for blockchain cryptocur-
rency monero. In CEuropean Symposium on Research
in Computer Security, pages 456–474, 2017.

[68] Jakub Breier and Xiaolu Hou. How practical are fault
injection attacks, really? IEEE Access, 10:113122–
113130, 2022.

[69] Aurélien Vasselle, Hugues Thiebeauld, Quentin
Maouhoub, Adèle Morisset, and Sébastien Ermeneux.
Laser-induced fault injection on smartphone bypassing
the secure boot-extended version. IEEE Transactions
on Computers, 69(10):1449–1459, 2018.

[70] Huiyun Li, Guanghua Du, Cuiping Shao, Liang Dai,
Guoqing Xu, and Jinlong Guo. Heavy-ion microbeam
fault injection into sram-based fpga implementations of
cryptographic circuits. IEEE Transactions on Nuclear
Science, pages 1341–1348, 2015.

[71] Stéphanie Anceau, Pierre Bleuet, Jessy Clédière, Lau-
rent Maingault, Jean-luc Rainard, and Rémi Tucoulou.
Nanofocused x-ray beam to reprogram secure circuits.
In IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 175–188, 2017.

https://support.lenovo.com/au/en/product_security/row_hammer
https://support.lenovo.com/au/en/product_security/row_hammer

[72] Oscar M Guillen, Michael Gruber, and Fabrizio De San-
tis. Low-cost setup for localized semi-invasive optical
fault injection attacks: How low can we go? In Interna-
tional Workshop on Constructive Side-Channel Analysis
and Secure Design, pages 207–222, 2017.

[73] Bodo Selmke, Florian Hauschild, and Johannes Ober-
maier. Peak clock: Fault injection into pll-based systems
via clock manipulation. In ACM Workshop on Attacks
and Solutions in Hardware Security Workshop, pages
85–94, 2019.

[74] Niek Timmers and Cristofaro Mune. Escalating priv-
ileges in linux using voltage fault injection. In Work-
shop on Fault Diagnosis and Tolerance in Cryptography,
pages 1–8, 2017.

[75] Karim M Abdellatif and Olivier Hériveaux. Silicon-
toaster: A cheap and programmable em injector for ex-
tracting secrets. In Workshop on Fault Detection and
Tolerance in Cryptography, pages 35–40, 2020.

[76] Md Mahbub Alam, Shahin Tajik, Fatemeh Ganji, Mark
Tehranipoor, and Domenic Forte. Ram-jam: Remote
temperature and voltage fault attack on fpgas using mem-
ory collisions. In Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 48–55, 2019.

[77] Paul Grandamme, Pierre-Antoine Tissot, Lilian Bossuet,
Jean-Max Dutertre, Brice Colombier, and Vincent
Grosso. Switching off your device does not protect
against fault attacks. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2024.

[78] Nicolas Moro, Amine Dehbaoui, Karine Heydemann,
Bruno Robisson, and Emmanuelle Encrenaz. Electro-
magnetic fault injection: towards a fault model on a
32-bit microcontroller. In Workshop on Fault Diagnosis
and Tolerance in Cryptography, pages 77–88, 2013.

A Supplemental Material

In this appendix, we demonstrate the vulnerability of fault
injection related to ML-DSA, Elgamal, RSA and BLS.

A.1 Analysing ML-DSA

ML-DSA is a lattice-based post-quantum signature formally
standardized by NIST implemented in liboqs-0.10.0. The
underlying hard problem is the RLWE over modulus lattice.
We first give a simplified description of the scheme to demon-
strate our attack on ML-DSA. Since ML-DSA is rather com-
plicated, we describe it in an algorithm and simplify some
unnecessary steps. Please refer to [29] for a detailed descrip-
tion.

Gen(1λ): (described in algorithm 4) generates pk, sk related
to the RLWE problem through a random seed ρ. The number
theoretical transform (NTT) is used for acceleration during
the generation and has homomorphic properties such that
NT T (ab) = NT T (a) ·NT T (b) and NT T−1(NT T (a)) = a.

Algorithm 4: Gen algorithm of ML-DSA (simplified)

1 Output: Keypair pk,sk
2 ζ←{0,1}n,(ρ,ρ′,K)← H(ζ)

// Generate the public matrix Â in NTT
form.

3 Â ∈ Rk×l
q ← ExpandA(ρ)

4 (s1,s2) ∈ Sl
η×Sk

η← ExpandS(ρ′)
5 t← NT T−1(Â ·NT T (s1))+ s2

6 pk← (Â, t),sk← (s1,s2,ζ)

Sign(pk,sk,m): (depicted in algorithm 5) takes pk,sk and
message m as inputs, and generates a signature (c,z). The
parameters in Sign are considered targets for fault injection.

Algorithm 5: Sign algorithm of ML-DSA (simplified)

1 Input: Message m, private key sk = (ρ, tr,s1,s2, t,K).
2 Output: Signature σ = (z,c,h)
// Compute the matrix Â in NTT form

3 Â ∈ Rk×l
q ← ExpandA(ρ)

4 ŝ1, ŝ2, t̂← NT T (s1),NT T (s2),NT T (t)
5 µ← H(m, pk), rnd←{0,1}256

6 ρ′← H(K,u,rnd)
7 κ← 0,(z,h)←⊥
8 do

// Generate y from ρ′,κ
9 y← ExpandMask(ρ′,κ)

10 w← NT T−1(Â ·NT T (y))
11 c← H(µ,w)
12 ĉ← NT T (c)
13 ⟨cs1⟩ ← NT T−1(ĉ · ŝ1), ⟨cs2⟩ ← NT T−1(ĉ · ŝ2)
14 z← y+ ⟨cs1⟩
15 r0← LowBits(w−⟨cs2⟩)
16 if ||z||∞ ≥ γ1−β or ||r0||∞ ≥ γ2−β then
17 (z,h)←⊥
18 else

// Generate h to compute w
19 h←MakeHint(−ct0,w− cs2 + ct0)
20 end
21 while (z,h) =⊥

Vrfy(pk,m,σ): (described in algorithm 6) takes a signature
σ, message m and pk as input, output put 1 if the hash check
pass and 0 if not.

We also map the parameters used in ML-DSA into G-sign,
c,m,A, t, µ,w are public parameters and s,y are secret. We

Algorithm 6: V r f y algorithm of ML-DSA (simpli-
fied)

1 Input: pk,m,σ
2 Output: a decision bit
3 µ← H(m, pk)
4 w′← NT T−1(Â ·NT T (z)−NT T (c) ·NT T (t))
5 w←UseHint(h,w′)
6 accept iff c = H(µ,w)

simulate fault injection to these parameters and find that
c,µ,m,A is vulnerable to DFA and s is vulnerable to SCA.
We show how to recover secrets from faulty signatures. The
derivation is as follows.

Types pp sp
ML-DSA c m A, t µ,w s1,s2,y,ζ
G-sign h m pk r sk

Table 5: Classification of potentially vulnerable parameters
in ML-DSA.

Faulting public parameters with DFA: Parse pp as A, t,µ,c,
we find that when a single fault occurs to c, the output signa-
ture is converted to z′ = y+ c′s1, compared to a valid one z =
y+ cs1, we can compute secret key s1 as s1 = g(pp) · (z′− z)
and g(pp) = (c′− c)−1.As there is a high probability that
(c′−c) is invertible, we can easily compute s1 with two signa-
ture queries. We can also conclude that parameters that serve
as input when computing c can also be vulnerable, such as
m,µ,w.
Faulting secret parameters with SCA: Parse sp as s1,s2,y,ζ,
and we manage to perform a SCA when faulting s1 (other
secrets can be computed by s1 in lattice), If one bit flip oc-
curs in s1 before the signature generation, the faulty signa-
ture becomes z′ = y+ cs′1. The difference between the faulty
signature and its valid one is ∆z = c(s1− s′1) = c∆s1. Here
g(pp,∆s) can be denoted as c∆s. Note that s1 is defined over
Sl

η and its elements are all polynomials. Without loss of gen-
erality, let the one-bit fault occur in the j-th coefficient in the
i-th element in s1, denoted as ai j. The fault component is
∑

n−1
k=0 ckxk ·∆ai jx j. Since c can be computed without a secret

key, the attacker can eliminate the fault term to yield a valid
signature, resulting in leakage of the secret key.

A.2 Analysing Elgamal

In this analysis, we describe Elgamal [31], which is imple-
mented in the Cryptopp-8.9 library, based on which we
show how to leak the secret key via Rowhammer.
Gen(1λ): Function Gen generates a public key pk and a secret
key sk. It first chooses a key length N, and then a N-bit prime
p. Then Choose a generator g < p of the multiplicative group
of integers modulo p, Z∗p. Using (g, p), it chooses x randomly

from {1 . . . p−2} and set y = gx mod p. It sets pkas,

pk = (g, p,y) (7)

Regarding sk, it is defined as:

sk = x (8)

pk and sk satisfy the following equations:

y = gx mod p (9)

Sign(pk,sk,m): Function Sign takes pk,sk and m as inputs,
utilizes H as hash function and k as a randomly chosen num-
ber, generates a signature (r,σ) as follows:

r = gk (10)

σ = (H(m)− xr)k−1 (11)

Vrfy (pk,σ,m): Function Vrfy takes a signature σ and m, pk
as inputs, and generates 1 (i.e., verification succeeds) if the
following equation holds:

gH(m) = yrrσ (12)

We first parse the parameters to G-sign in Table 6. When
simulating fault injection on pp, we have not found a suc-
cessful DFA leakage because the signature and hash value in
Equation 11 does not satisfy the linearity property in line 8
of algorithm 1. In SCA analysis, we successfully leak secret
keys.

Scheme pp sp

Elgamal H(m) m g, p,y r,k x

G-sign h m pk r sk

Table 6: Classification of potentially vulnerable parameters
in Elgamal.
Faulting secret parameters x: When a single bit flip oc-
curs to x before the Sign (pk,sk,m) function is invoked, the
generated signature will become as follows:

σ = (H(m)− x
′
r)k−1 (13)

Here, we denote x
′

as x+∆x where ∆x represents the in-
jected fault. To make verification hold, ∆x must satisfy the
following equation (a simplified form of expression of SCA in
line 15 in algorithm 2):

gH(m) = yrrσ ·g∆x (14)

When Equation 14 holds, we are able to find out the index of
the bit flipped in x and thus recover its original bit.
Faulting secret parameters k: When a single bit flip oc-
curs to k before the Sign (pk,sk,m) function is invoked, the
generated signature will become as follows:

σ = (H(m)− xr)k
′−1 (15)

In a similar way, we denote k
′
= k+∆k. We are able to recover

∆k as the original bit of k if the following equation holds:

gH(m)y−rgσ−1
= g(H(m)−xr)·(H(m)−xr)−1 ·gk+∆k = r ·g∆k (16)

A.3 Analysing RSA

We briefly introduce RSA implemented in wolfssl-5.6.6
and openssl and demonstrate how we launch a fault injection
attack.
Gen(1λ): Function Gen generates a public key pk and a
secret key sk. a public key consists of integers (N,e), where
N = pq is a public modulus obtained from two large primes p
and q, and e represents the public exponent used in signature
verification. The private key d is the secret signing exponent
obtained as d = e−1 mod φ(N) where φ(N) = (p−1)(q−1).
Set pk = (N,e),sk = d
Sign(pk,sk,m): Function Sign takes pk,sk and m as inputs,
output a signature σ as:

σ = md (17)

Vrfy (pk,σ,m): Function Vrfy takes a signature σ and m, pk
as inputs, and generates 1 (i.e., verification succeeds) if the
following equation holds:

m = σ
e (18)

Scheme pp sp

RSA / m N,e / d

G-sign h m pk r sk

Table 7: Classification of potentially vulnerable parameters
in RSA.

We show the mapping table in Table 7. When faulting
public parameters, we have not found any leakage to do DFA
as RSA does not satisfy the linearity property in line 8 of
algorithm 1. When faulting sk, we find exploitable leakage
using SCA.
Faulting secret parameters d: When a single bit flip oc-
curs to d before the Sign (pk,sk,m) function is invoked, the
generated signature will become as follows:

σ = md
′

(19)

We can correct the faulty signature to make verification
holds by adding a ∆d term as m = σe ·m−e∆d . Then, use ∆d
as a leakage bit of secret key d.

A.4 Analysing BLS
We briefly introduce BLS implemented in
bls-signature-2.0.3 and demonstrate how we launch a
fault injection attack.
Gen(1λ): Function Gen generates a public key pk and a se-
cret key sk. The public key consists of elements Q,g from
group G, a public hash function H and a bilinear map e.
the secret key is a random integer x,x ∈ [0, ..., |G|− 1]. Set

pk = (Q,g,G,H,e),sk = x, pk and sk satisfies the following
equations:

Q = gx (20)

Sign(pk,sk,m): Function Sign takes pk,sk and m as inputs,
compute h = H(m) and output a signature σ as:

σ = hx (21)

Vrfy (pk,σ,m): Function Vrfy takes a signature σ and m, pk as
inputs, compute h = H(m) and generates 1 (i.e., verification
succeeds) if the following equation holds:

e(σ,g) = e(h,Q) (22)

Scheme pp sp

BLS h m Q,g / x

G-sign h m pk r sk

Table 8: Classification of potentially vulnerable parameters
in BLS.

We show the mapping table in Table 8. When faulting
public parameters, we have not found any leakage to do DFA
as BLS does not satisfy the linearity property in line 7 of
algorithm 1. When faulting sk, we find exploitable leakage
using SCA.
Faulting secret parameters x: When a single bit flip oc-
curs to x before the Sign (pk,sk,m) function is invoked, the
generated signature will become as follows:

σ = hx
′

(23)

We can correct the faulty signature to make verification
holds by adding a ∆x term as e(σ

′
,g) = e(σ,g) · e(h∆x,g).

Then, use ∆x as a leakage bit of secret key x.

	Introduction
	Responsible Disclosure

	Background and Related work
	Threat Model and Assumptions
	Achilles
	Overview
	Formal Treatment of Signature Schemes
	A Game-based Model against G-sign
	Secret Key Recovery
	SCARA: SCA remaining bits recovery

	Case Studies
	Analysing BB short
	Analysing EdDSA
	Identifying potentially vulnerable parameters automatically

	Evaluation
	Experimental Setup
	Profiling Memory
	Faulting Targeted Parameter
	Serect Key Recovery

	Countermeasures
	Mitigating Faults on Signature Schemes
	Mitigating Rowhammer Attacks
	Serect Key Recovery from Hardened Signature Implementations

	Discussion
	Limitations
	Physical fault injection

	Conclusion and Future Work
	Ethics Statements and Open Science Policy Compliance
	Supplemental Material
	Analysing ML-DSA
	Analysing Elgamal
	Analysing RSA
	Analysing BLS

