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Abstract—FPGAs offer superior energy efficiency and perfor-
mance in parallel computing but are vulnerable to remote power
side-channel attacks. Existing attacks rely on assumptions of co-
resident crafted circuits and shared power delivery networks,
limiting their practicality in real-world scenarios. In this paper,
we present AmpereBleed, a novel current-based side-channel
attack that exploits widely available INA226 sensors in ARM-
FPGA SoCs, bypassing the aforementioned two assumptions.
AmpereBleed achieves 261 x greater variations to victim activities
compared to the popular ring oscillator (RO) circuit, fingerprints
DNN models on the Xilinx Deep Learning Processor Unit (DPU)
with 99.7% accuracy, and distinguishes the Hamming weights of
RSA-1024 keys.

I. INTRODUCTION

Over the past few decades, Field Programmable Gate Arrays
(FPGAs) have gained widespread adoption due to their supe-
rior energy efficiency and performance in parallel computing
applications [14], [19], [20]. For example, when performing
inference tasks on Llama 2 (a large language model), the
Xilinx Virtex UltraScale+ VU9P FPGA achieves up to a
12.75x reduction in energy consumption per token compared
to the Intel Xeon Broadwell E5-2686 v4 CPU, and an 8.25x
reduction compared to the NVIDIA RTX 3090 GPU. In
addition, it delivers up to 2.46x faster inference speeds than
the CPU and reaches 53% of the GPU’s speed, despite the
GPU’s significantly higher base clock rate [20].

Despite these advancements, FPGAs face various security
threats, particularly from remote power side-channel attacks,
which can extract sensitive information from a victim FPGA
circuit without physical proximity to it [16], [22], [34], [37],
[38], [43]. Specifically, an attacker crafts a circuit that can
co-reside with a victim circuit on the same FPGA board,
sharing the power delivery network (PDN). As the PDN sup-
plies power to both circuits, increases in the victim’s voltage
(thus power consumption) cause transient voltage drops in
the crafted circuit. Further, the voltage fluctuations in the
crafted circuit lead to variations in signal propagation delays
within itself and can be reflected in its output. For instance,
as a representative circuit design, ring-oscillator (RO) [43]
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uses a combinational loop to increment a counter and sample
the counter at fixed time intervals, thereby observing voltage
through the increments of this counter.

Critical assumptions of state-of-the-arts: Notably, all
the aforementioned power side-channel attacks rely on the
assumption of co-residence between malicious and benign
circuits, which is feasible only in multi-tenant FPGA scenar-
ios where the PDN is shared among tenants. While FPGA
multi-tenancy has gained significant attention from academia
and industry as a promising approach to virtualize FPGA
resources in the cloud [25], it is not yet adopted in real-
world commercial practice [15]. Also, these attacks assume a
shared PDN that fluctuates when the victim circuit is actively
running, with voltage fluctuations observable by the attacker.
To mitigate them, PDN stabilizers are implemented to ensure
the FPGA supply voltage fluctuates within a limited range
(e.g., 0.825 V to 0.876 V on the Zynq UltraScale+ series
FPGAs). Additionally, recent works [10], [35] have proposed
isolated PDN for each tenant (e.g., [ISO-TENANT [10]).

As the critical assumptions significantly raise the bar for re-
mote power side-channel attacks, this leaves an open research
question: Can a remote power side-channel attack against
FPGAs still be feasible if these assumptions are voided?

Our work: In this paper, we answer this question affirma-
tively by presenting AmpereBleed, a novel attack that bypasses
these limitations. Our key observation is that many embedding
devices are equipped with INA226 sensors that provide mea-
surements of current, voltage, and power for various
hardware components. In the context of ARM-FPGA SoCs,
these sensors monitor the FPGA board and provide fine-
grained current measurements for the FPGA which are the
most sensitive to FPGA activities among the three available
measurements. Further, these measurements are accessible to
an unprivileged process running on the ARM processor via the
hwmon subsystem. Leveraging this, AmpereBleed constructs a
current-based side channel to infer FPGA activities without
relying on either crafted circuits or a shared PDN.

In our evaluation, we first compare AmpereBleed’s
current with the ring oscillator (RO) circuit [43] (a well-



known crafted circuit that senses voltage fluctuations), re-
garding 161 distinct victim activation conditions. The results
indicate that AmpereBleed-based current measurements
achieve 261 x greater variations than RO. Further, we validate
that AmpereBleed’s current is much more sensitive than
voltage and power under the same settings. Last, we ex-
ploit AmpereBleed in two case studies. First, we mount a DNN
model fingerprinting attack to show that AmpereBleed can
distinguish among 39 DPU accelerators with a high accuracy
of 99.7%. Second, we successfully apply AmpereBleed to
distinguish Hamming weights of secret keys from an RSA-
1024 circuit operating at 100 MHz.

Summary of contributions: The main contributions of this
paper are as follows:

« We present AmpereBleed, a new current-based remote
power side-channel attack against ARM-FPGA SoCs, with-
out relying on either crafted circuits or a fluctuating PDN.
AmpereBleed highlights the need for secure power moni-
toring implementation.

o We characterize how current measurements leak fine-

grained information about victim activities and compare

them with crafted circuit (i.e., RO [43]), voltage mea-
surements, and power measurements.

We apply AmpereBleed to two case studies, which fin-

gerprint different DPU accelerators and distinguish the

Hamming weight of RSA keys.

The source code to reproduce our experiments is released
at https://github.com/Skyofmine007/AmpereBleed-DAC.

II. BACKGROUND AND RELATED WORK
A. ARM-FPGA SoCs

Recent years have seen a growing demand for both en-
ergy efficiency and high performance, which has significantly
driven advancements in high-performance FPGAs. Unlike
CPUs and GPUs, which accelerate by optimizing instruction
streams, FPGAs provide substantial benefits for customized
computing due to their inherent re-programmability and high-
performance potential. For example, AMD Xilinx’s high-
end Al Adaptive Compute Acceleration Platform (ACAP)
VCKS5000 achieves 1.8 frames per second per watt compared
to Nvidia’s flagship Ampere GPU (A100 SXM) in a standard
MLPerf [31] benchmark.

ARM-FPGA System-on-Chips (SoCs) integrate ARM pro-
cessor cores with an FPGA to provide a versatile solution for
embedded systems [14]. The ARM cores, akin to standalone
ARM processors such as the STM32 series, are equipped with
various peripherals including UART, CAN, and GPIO ports,
while FPGA serves as a customizable peripheral. This tight
integration allows for high-speed, low-latency communication
between CPU and FPGA resulting in improved performance,
reduced cost, and a smaller physical footprint compared to
using separate chips. Today, ARM-FPGA SoCs have become
increasingly popular in Internet of Things (IoT) applications
for commercial purposes, including autonomous driving [4],
[9], 5G telecommunications [11], and medical devices [3], [8].

Companies like Baidu [9] and Subaru [4] have adopted this
architecture in their autonomous driving and driver-assistance
systems, respectively. For instance, Subaru has sold over 1
million vehicles with over 50 different models, which are
equipped with ARM-FPGA SoCs as a solution for driver-
assistance systems [4], highlighting the practicality of these
SoCs in real-world deployments.

B. Remote Power Side Channel Attacks against FPGAs

Power side channel attacks have long been recognized as a
significant source of information leakage. By analyzing power
consumption, an adversary can infer victim’s activities and
extract sensitive data. To enable remote power side channel
attacks on FPGAs, existing studies have explored a number of
crafted circuits [22], [34], [37], [38], [43] that can detect on-
chip voltage fluctuations. Specifically, all these works assume
that a crafted circuit co-resides with the victim circuit on the
same FPGA board, thereby sharing the same PDN with the
victim circuit. A fundamental vulnerability identified in these
studies is the inverse correlation between signal propagation
delay and voltage variations at gate level. When engineered
with precision, a crafted circuit can exploit voltage fluctua-
tions, resulting in varying bit flips in its output stream. This
behavior enables the creation of a novel side channel. The
adversary can then leverage this output to various end-to-
end attacks, including extracting cryptographic keys [34], [38],
[43], fingerprinting victim workloads [18], and stealing DNN
model architectures [42].

III. AMPEREBLEED

A. Threat Model

Aligned with prior works [14], [30], [36], [44], we consider
an unprivileged attacker controlling a user process without
special privileges, achievable through malicious over-the-air
(OTA) updates [28], [29] or malware installation [12], [24].
The attacker’s process is co-located with the victim circuits
on the same ARM-FPGA SoC equipped with INA226 sensors.
The victim is a victim circuit with full control over the FPGA
board for circuit deployment.
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Fig. 1: Attack overview of AmpereBleed. The components
inducing AmpereBleed’s leakage are marked as red.



TABLE I: A comparison of the number of integrated INA226 sensors on various ARM-FPGA SoCs.

Property ZCU102 ZCUu111 ZCU216 ZCU1285 VEK280 VCK190 VHK158 VPK180
FPGA Family Zynq UltraScale+ Zynq UltraScale+ Zynq UltraScale+ Zynq UltraScale+ Versal Versal Versal Versal
FPGA Voltage (V) 0.825~0.876 0.825~0.876 0.825~0.876 0.825~0.876 0.775~0.825 0.775~0.825 0.775~0.825 0.775~0.825
CPU Model Cortex-A53 Cortex-A53 Cortex-A53 Cortex-A53 Cortex-A72 Cortex-A72 Cortex-A72 Cortex-A72
DRAM 4GB 4GB 4GB 8GB 12GB 8GB 32GB 12GB
INA Sensors 18 14 14 21 20 17 22 19
Price ($) 3,234 14,995 16,995 32,394 6,995 13,195 14,995 17,995

B. Current-based Side Channel

As a first step for our analysis, we set out to review how
existing attacks [16], [34], [43] monitor dynamic power con-
sumption. Specifically, in a shared PDN that ideally ignores the
effect of the stabilizers and can be modeled as an equivalent
RLC matrix, an increase in the victim circuit’s power causes
transient voltage drops in neighboring circuits:

AT
Vd,.(,p—I-R+L-At, (1)
where Vo, depends on both steady-state current (I - R
drop) as well as short transients (% drop) caused by switching
logic on the FPGA. It can be seen that current serves as an
intermediate quantity of voltage change in these studies.
While previous studies have crafted various circuits [16],
[22], [34], [37], [38], [43] to capture the voltage drop in
the shared PDN, we note that dedicated PDN stabilizers [21]
have been implemented to ensure the FPGA supply voltage
fluctuates within a limited range, e.g., from 0.825V to 0.876 V
on the board with Zynq UltraScale+ series FPGAs (as shown
in Table I). Besides, there are improvements in academia [10],
[35] that aim at maintaining a stable voltage supply to each
tenant circuit. However, it remains unclear whether the remote
power side-channel threats can be fully mitigated after the
voltage is completely stabilized.

Foundation: The foundation behind our work is rooted
in an essential law of physics, where the overall dynamic
power can also be measured by the supply voltage and
current [1], as represented in Equation 2.

Puayn =Vaa-»_I(LE,RAM,DSP,Clocks,...), (2)

where Pgy, is the dynamic power, Vyq is the supply
voltage, and [ is the current drawn by different types of
computing elements, e.g., logic elements (LE), random access
memory (RAM), digital signal processing (DSP), and clocks.
Thus, even if the voltage remains stable, significant changes
in power still cause noticeable changes in current.

To this end, we propose AmpereBleed, a novel remote
power side channel attack that exploits current measure-
ment to infer victim activities. As shown in Figure 1, Ampere-
Bleed works on an ARM-FPGA SoC platform. Our attacker
is located on one of the ARM cores without any co-resident
circuit involved. To monitor on-chip current, we exploit
INA226 sensors, which are integrated into a wide range of
embedding devices for system monitoring, including ARM-
FPGA SoCs. By accessing unprivileged current driver (i.e.,
hwmon) of INA226 sensors, AmpereBleed infers the activities
of victim circuits through the red path.

TABLE II: Sensitive sensors that allow unprivileged access
through the hwmon interfaces on the ZCU102 board [5].

Sensor | Description

ina226_u76 | current, voltage, and power for full-power do-
main of the ARM processor cores.

ina226_u77 | current, voltage, and power for low-power do-
main of the ARM processor cores.

ina226_u79 | current, voltage, and power for FPGA’s logic
and processing elements.

ina226_u93 current, voltage, and power for DDR memory.

C. Unprivileged Sampling of On-chip Current

In this section, we provide implementation details about
the unprivileged sampling of current. First, to demonstrate
the widespread availability of the exploited INA226 sensors,
we have examined a range of SoC boards across two FPGA
families (i.e., Zynq UltraScale+ and Versal). Table I lists 8
representative boards, all of which include INA226 sensors.
Notably, AmpereBleed’s applicability extends well beyond
these examples. For instance, the ZCU106 board, featuring
14 1NA226 sensors, is not listed due to its similarity in price
and release date to the ZCU102. Besides, Table II showcases
four sensitive INA226 sensors out of the 18 integrated on the
ZCU102, providing on-chip monitoring for various compo-
nents including CPU, FPGA, and DRAM.

The 1NA226 sensors provide current and voltage
measurements at specific monitoring points. They also cal-
culate power indirectly from these two measurements when
properly calibrated [2].

We identify current as the most potentially exploitable
for two key reasons: First, for the victim FPGA workload, its
voltage measurements are constrained by a fixed resolution
of 1.25mV and exhibit minimal changes (as shown in Table I,
resulting in a limited range of voltage variations. Second,
the power measurements are derived from current and
voltage, with their resolution fixed at a ratio of 25 relative
to the current resolution [2]. Given the limited variability in
voltage, the power measurements are almost synchronized
to the current measurements, but the low bits are trun-
cated. In our evaluation, we compare current measurements
against voltage and power measurements to validate the
identification.

We use the hardware monitoring (also known as hwmon)
subsystem to access the INA226 sensors from the ARM
side without requiring any privileges. The subsystem is
also available in x86 processors [23]. We access the

Each INA226 sensor is equipped with a dedicated shunt resistor, enabling
current to be measured based on its voltage and resistance.



current measurements on each INA226 sensors through
/sys/class/hwmon/hwmon[0-+*]/currl_input in the
Linux file system. Notably, these interfaces provide a
resolution of +1 mA and a configurable updating interval
between 2 and 35ms. The resolution is determined by the
hardware sensors, and the default updating interval is set
to 35ms. Although the updating interval can be adjusted
at runtime, modifying it requires root privileges. Since
AmpereBleed assumes an unprivileged attacker, we use the
default updating interval throughout this paper.

IV. EVALUATION

Experimental machine: We evaluate AmpereBleed on a
Xilinx ZCU102 SoC, which features four Cortex-A53 cores
with a base frequency of 1200MHz and an FPGA fabric
operating at 300 MHz. The FPGA fabric includes 274,080
lookup tables, 548,160 flip-flops, and 2,520 digital signal
processing blocks. We use Petalinux to customize Linux-
based operating system for a specific SoC, which is a popular
approach for Xilinxk ARM-FPGA SoCs. All system configu-
rations, including hwmon settings and dynamic voltage and
frequency scaling (DVFS) policies, are kept by default.

A. Characterizing AmpereBleed

As outlined above, our AmpereBleed attack leverages the
unprivileged hwmon interface to acquire current measure-
ments that are related to the victim’s behavior in theory.
Here, we demonstrate that these current measurements are
sufficient to distinguish various activities of the victim FPGA.

Varying computing workloads: Then, we deploy 160k
power virus instances described in Gand et al. [17] to cover
major routing places of our ZCU102 board. They serve as a
victim to stress FPGA logic, aligned with Zhao et al. [43].
We then divide them into 160 groups and each group has
1 k evenly-distributed instances. After deploying the bitstream
onto the FPGA board, we can dynamically activate different
numbers of these groups from the ARM processor to make
the current vary by 161 levels.

Distinguishing different victim activities: Our first exper-
iment is to characterize the hwmon’s output under different
FPGA workloads. To this end, we activate a varying number of
power virus instances, making the victim activities vary from
161 levels. To construct a baseline, we follow Zhao et al. [43]
to reproduce RO circuits and distribute them throughout the
FPGA board to average dependence on spatial proximity to
activated power virus instances. At each level, we collect
10 k samples about current, voltage, and power of
FPGA logic from hwmon and the RO circuits, respectively,
and compute the mean of these samples as the final value to
derive the Pearson correlation coefficient which quantifies the
strength and direction of the linear relationship.

Figure 2 illustrates the correlation between these mea-
surements and the number of active power virus instances.
FPGA current and power exhibit a strong linear rela-
tionship with the number of activated power virus instances,
with a Pearson correlation coefficient of 0.999. Additionally,

x10"

2 y=43.02x +2481.39
£1.0
505
O
()S 20 40 60 80 100 120 140 160
x10°
5710 = — y=-42.17x + 710568 .44
g ey
5 .
] —-
& 7.05 .
0 20 40 60 80 100 120 140 160
~ y = 0.006x + 848.83
E 850
;’ o il IS
5 -
2 [
> 849 syt -
0 20 40 60 80 100 120 140 160
x10°
£1.0 y=36.37x +2327.08
E
5
205
-9
0 20 40 60 80 100 120 140 160

Number of Power Virus Instances X 1000

Fig. 2: The FPGA current, voltage, and power accessed
via hwmon, along with RO counts, versus the number of
activated power virus instances.

FPGA voltage achieves a Pearson correlation of 0.958,
and RO achieves -0.996. This suggests that FPGA current
and power readings, accessed via hwmon, correlate more
strongly with victim activities under this experimental setup.
Furthermore, we compute the linear function for each type
of measurements. Due to power readings being updated at a
maximum resolution of 25 mW, the difference between con-
secutive settings is limited to 1-2 least significant bits (LSBs).
voltage measurements also show a limited linear correlation
coefficient of 0.006 and support a fixed and coarse-grained
resolution of 1.25mV, leading to only slight LSB changes
even under high workloads of 160k activated power virus
instances. In contrast, current measurements support a fine-
grained resolution of 1 mA and vary approximately 40 LSBs
per setting, enhancing their sensitivity to different victim
activities and, consequently, improving attack performance
as detailed in the following subsections. We clarify that the
reason why current measurements do not start from O is due
to the static workloads [26] caused by inactivated but deployed
power virus instances.

B. Fingerprinting DPU Accelerators

Xilinx DPU is a commercial framework for deploying
pre-trained DNN models on FPGA boards. To protect its
confidentiality and intellectual property, DPU encrypts its
hardware description language (HDL) files at the source code
level, following IEEE-1735-2014 V2 standard [6]. Due to
this encryption, attackers cannot determine how the model
inference is performed, such as the sequence of matrix compu-
tations and intensive memory read-write activities, increasing
the difficulty of attack. Till now, the only one attack against
DPU is to reverse-engineer the encrypted implementation
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Fig. 3: current patterns leaked from four sensors during different DNN model inferences.

details about DPU, which requires a high-resolution probe and
physical proximity to sample electromagnetic signals [19].

In this subsection, we demonstrate a DNN model finger-
printing attack against the DPU framework, notably achieved
without any specialized equipment. Our key insight is that
distinct current variation patterns during inference can
expose information about the underlying neural network opera-
tions. Knowledge of the DNN architecture poses a significant
intellectual property risk [13], and can facilitate further Al
attacks (e.g., adversarial example attack [27] and membership
inference attack [40]).

Victim DPU accelerator: To deploy DPU framework on
ZCU102 board, we utilize its official image provided by
AMD-Xilinx [7]. This image incorporates Python version
3.9.9, Linux kernel version 5.15, and Vitis Al version 3.0.
To minimize the impact of process scheduling interference,
we schedule the task of triggering DPU inference onto CPU
core 0, and the sampling tasks onto CPU core 3. We select
a complete suite of image recognition models from Vitis Al
Library as victim accelerators, including 39 architectures over
7 diverse architecture families. We conduct inference using
the ImageNet ILSVRC Test set, resizing the input images to
comply with the specifications of the victim accelerators. By
default, the victim runs each model in series for 5 seconds.

Experimental setup: Aligned with previous work [27], [41],
our model fingerprinting attack has two distinct phases: an
offline preparation phase and an online classification phase. In
the offline preparation phase, we collect traces of current,
voltage, and power by separately sampling each interface
to build a series of well-trained classifiers, each of which
can classify a specific type of side channel traces to their
corresponding model architectures. In the online classification
phase, we issue queries to a black-box accelerator running on
our FPGA board, triggering its model inference. Concurrently,
we collect side-channel traces from hwmon. With the collected
traces, we then use the corresponding classifier to fingerprint
the architectures of encrypted DPU accelerators.

Since our fingerprinting attack is essentially a classification
task with straightforward features, we use random forest
(RForest) to conduct the evaluation, due to its suitability
for handling high-dimensional data and identifying feature
importance. We configure RForest with 100 trees and set the
maximum depth to 32. The model uses Gini impurity as the

TABLE III: Classification accuracy for encrypted accelerator
fingerprinting. The baseline of random guess is 0.0256.

Duration 1s 2s 3s 4s
Sensor

Top-1 0.823 0.830 0.832 0.834 0.837 NN
Top-5 0.981 0.980 0.982 0.981 0.9s2 NN

Top-1 0.429 0.498 0.548 0.557 0.557 A
Top-5 0.870 0.905 0.914 0.915 0.915 N

Top-1 0.953 0.961 0.960 0.959 0.953 N
Top-5 0.998 0.999 0.999 0.999 0.999 NN

Top-1 0.980 0.985 0.997 0.997 0.997 I
Top-5 1.000 1.000 1.000 1.000 1.000 N

Top-1 0.080 0.099 0.116 0.118 0.116 W
Top-5 0317 0.323 0.327 0326 0.330 I

Top-1 0.929 0.973 0.989 0.991 0.989 N
Top-5 0.997 0.997 0.997 0.996 0.99¢ I

55 (Full-length)

Current
(Full-power CPU)

Current
(Low-power CPU)

Current (DRAM)

Current (FPGA)

Voltage (FPGA)

Power (FPGA)

splitting criterion, measuring class impurity within nodes to
assess the quality of splits. We apply bootstrap sampling to
build each decision tree, ensuring each tree is trained on a
unique subset of data by selecting samples with replacement.
For validation, we perform a 10-fold cross-validation where, in
each iteration, 9 folds serve as training data and the remaining
fold is used for testing.

Experimental results: Figure 3 illustrates examples of
current traces collected via four hwmon interfaces while
the DPU executes 6 DNN models separately, including
MobileNet-V1, SqueezeNet, EfficientNet-Lite, Inception-V3,
ResNet-50, and VGG-19, with their respective model sizes
indicated. Each of the selected models produces a unique
current patterns, influenced by the computing activities
during the inference phase. The DPU’s activity, involving the
CPU, FPGA, and DRAM, is reflected in these current
traces from these components, effectively captured by the
hwmon interfaces and highlighting significant model finger-
printing vulnerabilities.

Table III presents the fingerprinting results of four sensitive
current sensors, an FPGA voltage sensor, and an FPGA
power sensor captured by hwmon, with each sensor’s top-1
accuracy displayed in the first row and top-5 accuracy in the
second row. We observe that all the current sensors achieve
a high accuracy when the duration exceeds 3 s. Notably, FPGA
current measurements reach a high accuracy of 99.7%,
indicating a strong correlation between FPGA current vari-
ations and DPU activities. Given the greatly varied workloads
of different DPU accelerators on the FPGA logic (as shown in



Figure 3(c)), indirect power measurements that are computed
from current and voltage also achieve a high success
rate of 98.9%. In contrast, the FPGA voltage measurements
achieve a significantly lower accuracy of 11.6%.

C. Example Attack on an RSA

Beyond fingerprinting attacks, we present a concrete attack
example that shows how AmpereBleed can infer the Hamming
weight of secret keys from an RSA module implemented on
an FPGA. Specifically, we assume an unprivileged attacker
running on ARM cores targets a victim circuit performing
RSA encryption. Till now, the only one attack against RSA-
1024 circuit is Zhao et al. [43], where a malicious process
samples the RO outputs with a high sampling frequency of
2 MHz. However, their victim RSA circuit operates at a low
frequency of 20 MHz and RO circuits have been banned by
commercial cloud providers (e.g., AWS [33]).

Victim RSA accelerator: We follow Zhao et al. [43] to
implement an RSA-1024 circuit as the victim, and modify it
to operate at 100 MHz. This circuit employs the Square-and-
Multiply algorithm, which consists of two dedicated modular
multiplication modules and a state machine. The state machine
iterates through each bit of the 1024-bit input exponent, start-
ing from the least-significant bit. One multiplication module
is used for computing the square term and the other module is
used for the multiplication operation. For every iteration, if the
current least-significant bit of the iteratively-shifted exponent
is ‘1’, both the two modules are activated to compute the
square, inducing high switching activities. Otherwise, only
a square operation will be activated. Both multipliers are
synchronized to complete computation within the same cycle
for each iteration of the loop. To protect the secret key,
this implementation embeds the key within the encrypted
bitstream. Once the circuit is deployed on an FPGA, the private
key remains inaccessible, even to privileged users.
Experimental setup: To perform power side channel attack,
our attack program continuously records the FPGA current
measurements from the hwmon interface, using the sampling
frequency of 1kHz to collect 100,000 samples. During the
current collecting, the RSA modular repeatedly encrypts a
random plaintext. To demonstrate that FPGA current mea-
surements can indeed leak information about private keys, we
construct 17 distinct keys whose Hamming weights increase
in intervals of 64, except for the first key that is chosen as 1
(since the RSA circuit does not support exponentiation with
a value of 0). To make a comparison, we also use the FPGA
power measurements to repeat the above procedure.
Experimental results: Figure 4 shows the statistical distri-
bution of FPGA current and power measurements during
RSA-1024 execution. Clearly, the attacker can use the FPGA
current measurements to infer the Hamming weights of
these private keys. As a comparison, the power measurements
could only categorize the 17 keys into 5 groups. We note
that knowledge of the Hamming weight can greatly reduce
the search space of RSA’s key brute force attack, and serves
as a precursor for statistical analysis attacks [32].
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V. DISCUSSION

Mitigation: Since AmpereBleed exploits unprivileged ac-
cess to INA226 sensors, restricting their access to privileged
users can effectively mitigate the unprivileged attacks that are
demonstrated in this paper. However, this restriction may badly
affect benign programs that rely on these interfaces for per-
formance monitoring, fault detection, and system management
purposes. Besides, it requires driver or kernel updates for all
affected devices, and cannot protect the legacy systems.

Future work: While this study primarily focuses on the
Xilinx ARM-FPGA platforms, it raises the question of whether
similar vulnerabilities exist in other FPGA SoCs (e.g., Intel’s
ARM-FPGA SoC products) as more FPGA boards are in-
tegrating a CPU as well as on-chip sensors within a single
die. Besides, this paper only considers unprivileged attack
scenarios, whether these INA226 sensors could be exploited
to attack trusted execution environments (TEEs) implemented
on FPGA [39] remains an open question. Last, as the on-chip
current can also be measured by physical devices [26], we
are also interested in its security implications as a physical
side channel.

VI. CONCLUSION AND ACKNOWLEDGMENTS

In this work, we propose AmpereBleed, a new type of
remote power side channel attack to infer FPGA activities.
Specifically, AmpereBleed targets the ARM-FPGA SoC archi-
tectures and exploits the unprivileged hwmon subsystem to ac-
quire current measurements. To demonstrate the viability of
AmpereBleed, we first characterize the behavior of current
measurements under varying power consumption conditions,
experimental results of which show that fine-grained victim
activities can be distinguished. We then successfully apply
AmpereBleed to fingerprint DPU accelerators and infer the
Hamming weights of different RSA private keys.
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