Fish and Chips: On the Root Causes of Co-located
Website-Fingerprinting Attacks

Yusi Feng, Sioli O’Connel, Xin Zhang, Chitchanok Chuengsatiansup, Daniel Genkin,
Yuval Yarom, Yingian Zhang, Senior Member, IEEE, and Zhi Zhang, Member, IEEE

Abstract—Microarchitectural website-fingerprinting attacks
use timing information to leak the browsing habits of a victim to
co-resident attackers. Microarchitectural leakage in these attacks
often comprises multiple sources. While most published attacks
claim to identify the cause of leakage, these claims are not always
well supported. Thus, so far the question of how to determine
what leaks remains mostly unanswered.

In this work, we develop a framework for identifying and
measuring the contribution of leakage sources to the overall
observations the attacker makes. Experimenting with three
website-fingerprinting attacks in the literature, we qualitatively
identify four main classes of leakage sources: core contention,
interrupts, frequency scaling, and cache eviction. We demonstrate
cases where we can completely mitigate leakage by controlling
these sources. We then show that enabling each of the sources
individually leaks enough to allow website-fingerprinting attacks.
In the quantitative analysis, we use the correlation between events
related to each source and the measured timing in the attacks as
a metric to determine the relative contribution of each source to
the specific attack. Our work provides insights into the leakage
sources of coarse-grained microarchitectural attacks, aiding the
design of secure processor systems as well as more effective
attacks and defenses.

Index Terms—System Security, Side-Channel Attack, Website-
Fingerprinting Attack.

This research was supported by the Air Force Office of Scientific Research
(AFOSR) under award number FA9550-24-1-0079; the Alfred P Sloan Re-
search Fellowship; an ARC Discovery Project number DP210102670; the
China Scholarship Council (CSC), grant number 202104910308; the De-
fense Advanced Research Projects Agency (DARPA) under contract numbers
WO912CG-23-C-0022, the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972; and gifts from Cisco and Qualcomm. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government. (Corresponding authors: Yingian Zhang;
Yuval Yarom.)

Yusi Feng and Yingian Zhang are with the Department of Computer Science
and Engineering, Southern University of Science and Technology, Shenzhen,
Guangdong 518055, China. (E-mail: {fengys, zhangyq3} @sustech.edu.cn).

Sioli O’Connell is with the University of Adelaide, North Terrace, Adelaide
SA 5005, Australia. (E-mail: sioli.oconnell @adelaide.edu.au).

Xin Zhang is with the School of Software and Microelectronics, Peking
University, Beijing 100871, China. (E-mail: zhangxin00@stu.pku.edu.cn).

Chitchanok Chuengsatiansup is with the Hasso-Plattner Institute and the
University of Potsdam, Prof.-Dr.-Helmert Str. 2-3, 14482 Potsdam, Germany.
(E-mail: chitchanok.chuengsatiansup @hpi.de).

Daniel Genkin is with the Georgia Institute of Technology, Coda Building,
756 West Peachtree Street NW, Atlanta, Georgia 30308, USA. (E-mail:
genkin@gatech.edu).

Yuval Yarom is with Ruhr University Bochum, 44780 Bochum, Germany.
(E-mail: yuval.yarom@rub.de).

Zhi Zhang is with the department of Computer Science and Software
Engineering, University of Western Australia, Perth, WA 6009, Australia. (E-
mail: zzhangphd @ gmail.com).

We thank the reviewers, as well as Jason Kim and Jalen Chuang from
the Hardware Security Lab at the Georgia Institute of Technology, for their
assistance with the experiments.

I. INTRODUCTION

VER the last two decades, side-channel attacks that

leak information through shared computational resources
have become a threat to the security of computer sys-
tems. Multiple attacks have been designed, exposing secrets
such as cryptographic keys [1]-[6], address space layout
information [7]-[9], proprietary hardware designs [10]-[12],
keystrokes and their timing [13], [14], visited websites [15]-
[21], data accessed during speculative execution [22], [23],
and other secret of private information [24].

While most such attacks target specific components, such as
memory caches [4], [6], [25]-[27], branch predictors [7], [28]-
[31], translation lookaside buffers [32]-[34], shared buses [35],
[36], execution units [37]-[39], or GPUs [19]-[21], [40],
[41], others extract leaked information from coarse-grained
measurements of system performance [17], [18], [42]-[45].
Such attacks have several advantages. In particular, they can
be mounted without fully controlling the microarchitecture of
a system or even without fully understanding it.

Similar to attacks that measure individual components, the
attack designer models the behavior of the system and uses
the model to devise software whose execution time depends
on the victim’s behavior. For example, Shusterman et al. [18]
propose the cache-occupancy primitive as a method to perform
website fingerprinting. The primitive repeatedly measures the
time taken to iterate through a large buffer. The attacker can
detect victim memory accesses by detecting corresponding
slowdowns when accessing this large buffer. These slowdowns
occur because victim memory accesses evict parts of the
attacker’s buffer. Then, when accessing the buffer, the attacker
must wait for the memory to be served from the slower main
system memory.

Typically, the success of the attack is taken as a validation
of the model, and thus Shusterman et al. [18] attribute the
leakage to cache activity. However, due to the course-grain
nature of the measurements, it is not clear if the attribution is
indeed justified. In particular, Cook et al. [42] cast doubt on
this explanation. They argue that the slowdowns observed by
the attacker are due to the operating system halting the current
attacker program to handle interrupts caused by the victim’s
activities.

Such doubts in the understanding of the mechanisms that
underlie an attack do not necessarily call into question the
validity of the attack. The attack’s success in recovering leaked
information proves that the attack is valid, irrespective of
whether we understand it. However, such doubts call into

question the validity of any countermeasures built on this un-
derstanding. For example, cache partitioning schemes are often
suggested as a countermeasure for cache-based attacks [10],
[18], [25], [27], [46]. If a system deploys such a scheme to
mitigate an attack that uses the cache-occupancy primitive, the
defense may be ineffective if the primitive recovers informa-
tion through interrupts rather than through the cache. With
an increasing deployment of side-channel countermeasures
in widely used software, such as web browsers [47]-[49],
compilers [50], and the Linux kernel [51], it has become
increasingly important to ensure that the foundations of our
defenses and theoretical leakage models accurately capture
reality.

Thankfully, several works have proposals that address this
problem. Giilmezoglu [44] proposes a methodology to solve
this problem in the context of website-fingerprinting attacks.
They record both the behavior of the browser and its effect on
the microarchitectural state of the processor using hardware
performance counters. They train machine-learning models to
distinguish websites based on these measurements and use
machine-learning techniques to uncover which aspects of the
measurements were deemed most important by the model. Ge
et al. [52] and Cook et al. [42] both propose methodologies
that rely on controlling microarchitectural channels to control
leakage. Both works use this control to test and validate
theoretical leakage models in the contexts of operating system
process isolation and website fingerprinting, respectively.

While the work of Giilmezoglu [44] is effective at linking
victim behavior to leakage, it does not reveal any insights
into how information flows to the attacker. In contrast, the
works of Ge et al. [52] and Cook et al. [42] do provide
insights into how information flows to an attacker, but they
were unable to completely control the flow and eliminate the
flow of information. We aim to fill these gaps.

Our Contribution

In this work, we introduce a framework for analyzing
coarse-grained microarchitectural channels. We demonstrate
our framework, analyzing three primitives in the context of
website-fingerprinting attacks: cache occupancy [18], loop
counting [42], and mwait [53]. For each of the attacks, we
identify the leakage source that contributes the most to the
attack success and quantify the contribution of each source.

Our framework consists of two parts: qualitative and quanti-
tative analysis. In the qualitative analysis, we first identify four
possible major sources of leakage described in the literature
and demonstrate: competition on CPU time [54], interrupt
handling [42], cache eviction [25], [55], and frequency scal-
ing [21], [56]-[58]. To validate that this list is comprehensive,
we determine BIOS and operating system settings that allow
us to manage each of the sources. Through controlling these
settings, we identify cases where we can completely eliminate
flow of information to the loop counting and mwait primitives,
and to significantly reduce it in other scenarios we investigate.
Being able to completely eliminate the leakage shows that all
leakage sources contributing to an attack have been identified.
We suspect that the remaining source of leakage in the

cache-occupancy attacks may be the contention on the main
memory [59], [60].

The second step in our qualitative analysis shows that each
of the identified leakage sources indeed leaks information. We
focus on the loop-counting attack, running on one of the ma-
chines where all leakage can be eliminated. We enable each of
the leakage sources separately and test for evidence of leakage.
We find that leakage through each of these sources alone is
sufficient to mount a successful attack that is competitive with
the baseline, demonstrating that no single channel is the sole
root cause of website-fingerprinting attacks. As an additional
contribution, we refine the investigation of leakage through
interrupts, identifying that leakage depends on the interrupt
type, with some interrupts causing more leakage while others
do not. Therefore, the attacker must target cores that handle
specific interrupts.

With all sources potentially leaking information, we perform
a quantitative analysis of the contribution of each source to
the overall leakage. To achieve this, we modify the attack
programs to collect performance events related to each source
from the operating system and processor. We then correlate
the attack counts with the event measurements of each source,
using the absolute value of the correlation as a metric for the
source’s contribution to the attacks. We find that the cache-
occupancy attack most strongly correlates with events related
to last-level cache activities. For the mwait attack, we identify
system interrupts and frequency scaling as the primary leakage
sources. Finally, the main contributor to the loop-counting
attack is frequency scaling on some processor models, while
on others it is a combination of system interrupts and fre-
quency scaling. Additionally, we successfully mount website-
fingerprinting attacks by directly using the event data related
to each source.

Our results corroborate the claim of Ge et al. [52] that
it is impossible to prevent the cross-core leakage in modern
processor systems. We have only succeeded doing that for
very limited attacks, and even that only on some processors.
Moreover, we conclude that focusing on a single channel is
not enough for designing system-level defenses. Every channel
may leak enough for a successful attack, and consequently all
channels need to be considered.

Moreover, some of the leakage effects are counterintu-
itive. An example is the observation that the loop-counting
attack leaks via a cache channel. The loop-counting attack
only counts the number of loop iterations that the attacker
can perform within a set time, and does not measure any
memory accesses. Thus, it could be expected that it will not
be affected by cache leakage. Yet, our measurements show
that the cache channel leaks enough information to enable
a website-fingerprinting attack with a reasonable accuracy.
Further investigation demonstrates that victim’s activity can
evict part of the attacker program from the cache, resulting in
instruction cache miss when executing the attack code.

In summary, the contributions of this work are:

e« We propose a framework for performing qualitative and
quantitative analysis of the root causes of co-located
website-fingerprinting attacks, which can also be used to

analyze other attacks based on coarse-grained microarchi-
tectural measurements (Section III).

o As the first step of our qualitative analysis, we identify four
major leakage sources and demonstrate how to control each
source to eliminate leakage. To the best of our knowledge,
this is the first work to completely eliminate leakage in a
co-located website-fingerprinting attack by controlling each
leakage source (Section IV).

e Our qualitative analysis further validates that all leakage
sources contribute to website-fingerprinting attacks. Addi-
tionally, we find that leakage through interrupts depends
on the type of interrupt handled by the attacker core.
We also observe that attacks not involving direct memory
accesses can still be influenced by instruction cache misses
(Section V).

« In the quantitative analysis, we measure the contribution of
each source to the overall leakage, identifying those that
contribute the most to each website-fingerprinting attack.
Additionally, we successfully mount website-fingerprinting
attacks by directly collecting data from each source (Sec-
tion VI).

II. BACKGROUND AND RELATED WORK
A. Caches

Modern processors use caches, fast memory co-located with
processor cores, to reduce the average latency of memory
accesses. These caches are arranged into a hierarchy where
typically lower-level caches are private to each core and
higher-level caches are shared among cores.

Inclusivity. The caches of some processors exhibit an inclu-
sive property. That is, the contents of lower-level caches is a
strict subset of data stored in higher-level caches. To maintain
this property, if data is evicted from a higher-level cache, it
must also be evicted from all lower-level caches. Caches that
do not exhibit this property are said to be non-inclusive.

Attacks on Caches. Since the cache is shared among different
processes, the cache state of one process may be affected by
the memory access behavior of a different process. Processes
may unintentionally encode sensitive information within their
memory access behavior which may be recoverable through
the use of a cache-based side-channel attack. Several works
have shown that cryptography keys [4], [6], [25], [61],
keystrokes [13], [14], and address layout [8], [62] can be
recovered using cache-based side-channel attacks. Several
mitigations have been proposed from the perspective of hiding
cache evictions or using intelligent noise injection [63]-[65].

B. Interrupts

Interrupts are signals from hardware or software that in-
dicate when a process or event requires immediate attention.
Hardware interrupts are triggered by devices such as mice,
keyboards, and network cards. Interrupts can also be generated
by the CPU itself. For example, processors often feature a
timer that can trigger an interrupt after some elapsed time.
This feature is often used to implement preemptive scheduling
in the operating system. When an Interrupt Request (IRQ) is

generated, the CPU will immediately halt the execution of the
current thread and invoke the corresponding interrupt handler
defined by the kernel. After the interrupt handler completes
the execution, the halted program resumes its execution.

Cores can also send interrupts to other cores. For example,
when memory mappings are updated within a multi-threaded
application, the core that triggers the update will send an
interrupt to other cores to invalidate their Translation Look-
aside Buffers (TLBs), which is known as a TLB shootdown.

Linux contains two interfaces for querying the number
of interrupts that have occurred on the machine: /proc/
interrupts and /proc/softirgs. Both interfaces
break down interrupts by the core that received the interrupt
and the type of interrupt that was received.

C. Website-Fingerprinting Attacks

Website-fingerprinting attacks use statistical analysis to dis-
tinguish which website a victim is visiting. The conventional
on-path attack model observes network packets traveling be-
tween the user’s computer and the network [66]-[77]. The at-
tacker fingerprints websites from patterns in size and timing of
network packets. Corresponding defenses [78]-[82] therefore
focus on injecting random delays and spurious cover traffic to
disrupt these patterns.

Co-located website-fingerprinting attacker executes on the
same machine as the victim. Most attacks exploit the
contention of shared microarchitecture resources such as
cache [15]-[19] and GPU [19]-[21]. In this paper, we
investigate the microarchitectural causes of three recent
website-fingerprinting attacks: cache-occupancy [18], loop-
counting [42] and mwait [53] attacks.

Cache-Based Website Fingerprinting. Shusterman et al. [18]
propose the cache-occupancy channel and demonstrate a
website-fingerprinting attack that exploits it. The cache-
occupancy channel is based on the observation that when a
victim accesses memory, the amount of memory inadvertently
evicted from the cache is proportional to the number of differ-
ent addresses accessed. The authors measure cache-occupancy
by repeatedly measuring the time to access a large buffer and
demonstrate a website-fingerprinting attack that achieves high
accuracy on the Alexa Top 100 websites.

Interrupt-Based Timing Side Channels. Cook et al. [42]
extend previous work by proposing that the timing in the
cache-occupancy attack [18] is primarily influenced by the
time spent handling interrupts, rather than the cache activity
itself. To substantiate this claim, they first modify the mea-
surement primitive by eliminating memory accesses, thereby
transforming the attack into one that only measures the number
of iterations of an empty loop. Subsequently, they demonstrate
that a website-fingerprinting attack based on this modified
primitive still achieves high accuracy. We refer to this attack
as the loop-counting attack.

Zhang et al. [53] exploit recently added user wait instruc-
tions to mount website-fingerprinting attacks and we refer to
this attack as mwait attack. The umwait instruction puts a
core into an idle state to conserve power and waits for a write
to an address range specified by the monitor instruction.

The core wakes when either a write to the monitored address
is performed, a timeout is reached, or an interrupt occurs.
The authors exploit this behavior to measure the number
of interrupts within a 10-millisecond window by counting
the number of umwait instructions that can be executed
within the window. Similarly, Rauscher et al. [83] exploit the
tpause instruction, which transitions the core to the new idle
states C0O.1 and CO0.2. This capability allows for monitoring
system activities, particularly interrupts, to facilitate website-
fingerprinting attacks.

D. Software-Based Power Side Channels

Traditional power analysis attacks measure the energy con-
sumption of hardware circuits to leak secrets from embedded
devices such as smart cards [84], [85]. They require physical
measurement with specialized equipment and as such require
physical proximity to the victim device.

In contrast, software-based power analysis attacks use soft-
ware to perform energy consumption measurements. These at-
tacks operate under a different attack model that better matches
attacks on mobile phones, desktop computers, or servers.
This model trades the requirements of physical proximity
and specialized equipment for code execution on the device.
Several works have mounted software-based power analysis
attacks using the Running Average Power Limit (RAPL) in-
terface on modern x86 CPUs to mount website-fingerprinting
attacks [86], extract AES and RSA keys [87], and to break
KASLR [88]. These attacks have been mitigated by removing
access to the RAPL interface from unprivileged users [89],
[90].

In addition to directly measuring the energy consumption,
several works have proposed techniques that exploit Dynamic
Voltage and Frequency Scaling (DVES) to indirectly measure
the energy consumption. DVFS is a power management tech-
nique that dynamically adjusts processor frequency to keep
the processor within its power and thermal limits. Wang et
al. [56], [57] were the first to exploit DVFS behavior to
measure CPU energy consumption and to distinguish between
different instructions and operands. They use this capability
to break several cryptographic systems, to measure the energy
consumption of other devices in the system, and to reveal
parts of rendered webpages. Furthermore, DF-SCA [91] was
the first work to exploit frequency scaling for website finger-
printing attacks by reading frequency values from unprivileged
access to the cpufreq interface. In addition, Taneja et
al. [21] demonstrated the widespread presence of frequency-
and power-based side channels. They mount several attacks,
including website fingerprinting, on a wide range of devices.

III. EXPERIMENTAL FRAMEWORK

Before presenting the details of our experiments and anal-
ysis, we first outline the experimental framework employed
to assess the sources of leakage in co-located website-
fingerprinting attacks. As illustrated in Figure 1, our frame-
work is divided into two components: qualitative and quan-
titative analysis. In the qualitative analysis, we identify the
main leakage sources of each attack. We begin by identifying

Identifying, controlling, and
eliminating potential leakage
sources (Section V)

Qualitative analysis
(Identification of main —
leakage sources)

Still leakage
left?

source (Section VI)

l

Quantifying each leakage
source’s contribution
(Section VII)

‘ Validating each leakage]

—

Quantitative analysis

Fig. 1. Our proposed framework for systematically identifying, validating,
and quantifying leakage sources.

the main potential sources of leakage and demonstrate how to
control and eliminate each source. We successfully mitigate
leakage in several scenarios (Section IV). Subsequently, we
validate that each identified source indeed contributes to
information leakage (Section V). For the quantitative analysis,
we measure the contribution of each leakage source to the
overall leakage in each attack (Section VI).

In the qualitative analysis, website-fingerprinting attacks are
used as a proxy to gauge the level of leakage, where high
classification accuracy reflects significant leakage capability.
In the quantitative analysis, we collect data associated with
each leakage source during the execution of the attacks and
examine the correlation between the attack data and data
from each leakage source. In this section, we first outline our
experimental setup (Section III-A) and describe the website-
fingerprinting attacks employed in this paper (Section III-B),
followed by an description to our framework, including both
qualitative (Section III-C) and quantitative (Section III-D)
analyses.

A. Experimental Setup

Table I summarizes the hardware and software configura-
tions of the computers we use in our experiments. Experiments
in Section V are performed only on our i9-12900KF and i7-
7700 machines as we can reliably remove leakage from these
machines but not from our 15-8259U machine.

B. Attack Descriptions

In this subsection, we investigate the microarchitectural
causes of three recent website-fingerprinting attacks: cache-
occupancy [18], loop-counting [42], and mwait [53]. We begin
by describing the threat model of these co-located website-
fingerprinting attacks, followed by the presentation of the
pseudo-code. Finally, we explain how we collect and report
the measurements for these attacks.

Threat Model. Co-located website-fingerprinting attackers
execute on the same machine as the victim and exploit
contention for shared microarchitectural resources. The attack

1

TABLE I
SYSTEM CONFIGURATIONS

CPU Intel i9-12900KF Intel i5-8259U Intel i7-7700

Memory 4x 16 GB DDRS5 4800 MT/s 2x 16 GB DDR4 2400 MT/s 1x 4 GB DDR3 1333 MT/s
Motherboard MSI Z690-A WIFIL NUCSBEB ASUS B150M-A D3

Storage 480 GB Western Digital SATA SSD 256 GB Silicon Power NVMe SSD 120 GB Patriot Burst SATA SSD
(O] Ubuntu 22.04.1 LTS Ubuntu 22.04.2 LTS Ubuntu 22.04.1 LTS

Kernel Linux 6.2.0 Linux 6.2.12 Linux 6.1.38

Browser Chrome 113.0.5672.63 Chrome 114.0.5735.198 Chromium 109.0.5414.74
Python Python 3.10.12 Python 3.10.12 Python 3.10.12

Selenium Selenium 3.141.0 Selenium 3.141.0 Selenium 3.141.0

C Compiler GCC 114.0 GCC 11.4.0 GCC 11.5.0

linked_list = create_linked_1list ()
for each sample ({
0

counter > for each sample {

1
> for each sample {

current = linked_list->head counter = 0 counter = 0
begin = time () : = : . —
// Traverse each cache line o Degin = e () 6 begin = time()
while (time() - begin < 5 ms) { | while (time() - begin < 5 ms) { s while (time() - begin < 5 ms) {

= i 9 UMONITOR;

current = current->next - x AT

= r

. counter = counter + 1 ! eTReeE = commieE & i ’ oeivieies AP
= 12 12 }
; samples[sample] = counter 13 samples[sample] = counter 13 samples[sample] = counter
14} 4}
Listing 1 © Listi 15 o
isting 2 Listing 3

PSEUDO-CODE OF::;}‘;SQCHE_OCCUPANCY PSEUDO-CODE OF THE LOOP-COUNTING ATTACK PSEUDO-CODE OF THE MWAIT ATTACK

can occur either when the user accesses an attacker-controlled
website containing malicious JavaScript or WebAssembly
code, or when a normal attacker program runs, attempting to
learn which other sensitive sites the user is visiting simulta-
neously. To gather more microarchitectural data, we execute
the attacker program written in C on the victim’s machine.
Furthermore, our attack operates in a closed-world scenario,
where we assume knowledge of the start time for each website
browsing session.

Pseudo-Code. We present the pseudo-code for the cache-
occupancy, loop-counting, and mwait attacks used in our paper
in Listings 1 to 3, respectively. We implement each using a
mix of inline assembly and C. As shown in Listing 1, for
the cache-occupancy primitive, we use a linked list, which
covers a memory buffer with the size of the last-level cache.
Each element in this list is a double pointer that points to the
address of a different cache line. This setup creates a chain
where each cache line’s content holds the address of the next
cache line to be accessed. We use a pointer chasing to traverse
the memory buffer of the last-level cache size. The traversal
order is randomized, and we link the last element of the list
back to the first to form a circular list. In each measurement
period of five milliseconds, we traverse along the list accessing
each of the elements.

We deviate from previous works which iterate through the
entire list for every loop iteration [17], [18], [42]. We instead
access a single element per loop iteration. This avoids the
artificial limit on the precision of the attack, which would
otherwise be limited to the time required to traverse the list.

Recording a Trace. To record a trace, we launch and navigate
a browser to a randomly chosen website. Concurrently, we

execute the code of one of the attacks. We let the attack collect
a total of 3000 samples, with a delay of five milliseconds
between successive samples, for a total collection time of a
little over 15 seconds. The extra time is due to the overhead
of collecting samples.

To guarantee that we capture the entire page load, we start
the attack and wait for 50 milliseconds, after which we navi-
gate to the target website. We ensure that the browser always
starts from the same configuration by visiting example . com
before we navigate to the real website.

Collecting Traces. Before collecting any traces, we first visit
each of the considered websites, allowing them to completely
load and display for a period of 30 seconds. This ensures that
every trace is collected with the same browser cache state and
is more representative of a real-world scenario where a victim
is unlikely to be visiting a website for the first time.

We collect 100 traces for each of the Alexa Top 100
websites, thus a total of 10 000 traces. Since Amazon has shut
down Alexa ranking sites, we use the same list of sites as Cook
et al. [42]. Six of the websites have been shut down or had
their domain names changed. We therefore replace these with
the six non-sensitive websites following the top 100 in Alexa’s
list. To prevent bias due to collection order, we randomize the
order of websites we visit. We automate the collection of these
traces with a Python program that uses Selenium to directly
control the web browser and Python’s threading library to
invoke the attacker.

Training a Classifier. We assume the ability to mount a
website-fingerprinting attack as a proxy regardless of whether
a system has information leakage or not. As Cook et al. [42],
we use a website-fingerprinting attack as a proxy for the level

168209

408656

google.com google.com google.com 161
(N T T AT T T T T I \ (LIRS0 Y 1 A N D Y O A 0
10 N A [T [T [T O T
{1 N T T AT 138574 [\ 390354 I T T T s
tmall.com tmall.com tmall.com
| LR] e DD 1 17000 1 B LIl I TN, TONTYE TN T T R Y
[TNDNEN IV (NI (T (T L U000 T 00 A0 0
(I 17 W (0 W[1] 108938 1 Ty 372052 [T I N T **°
youtube.com youtube.com youtube.com
T T T T [T T T T T
| 000 O T AR N W 79303 110 11N [[T 353751 [T T T TN Ls0
[[T IR T T TR T I T I I LTI T T T TR T TR
0 5 10 15 0 5 10 15 0 5 10 15
seconds 49668 seconds 335449 seconds 159
Fig. 2. A heatmap of cache-occupancy attack Fig. 3. A heatmap of loop-counting attack Fig. 4. A heatmap of mwait attack on a

on a baseline system (i7-7700 machine, website
classifier accuracy: 95.6+1.0%)

of leakage. We implement the same Long Short-Term Memory
(LSTM) model featuring 32 units, consistent with Cook et
al. [42] and Shusterman et al. [18], and maintain identical
hyper-parameters. Our evaluation process involves dividing the
data into ten folds, designating one fold as the test set while
distributing the remaining data into an 81% training set and
a 9% validation set. We execute this procedure iteratively for
each fold and calculate the average accuracy over all ten folds
to determine the final model accuracy.

Measuring Time. We measure time using the rdtscp
instruction, which measures reference cycles. These cycles
occur at a fixed rate irrespective of the actual frequency of the
processor [92, Vol. 3B §18.17] and are ideal for measuring
time with high precision. We convert five milliseconds to a
fixed number of reference cycles ahead of time and wait for
that number of reference cycles to elapse.

Heatmaps. Throughout this paper, we visualize the data
collected using one-dimensional heatmaps in the style of
Shusterman et al. [18]. We use a linear color map with the
minimum and maximum values set at the 2.5% and 97.5%
percentiles of the data. We note that while this removes outliers
and makes the visual features of each heatmap easier to
identify, it also means that color scales are different in different
figures.

Figures 2 to 4 show examples of heatmaps for each of the
attacks. The horizontal axis shows samples over time. The
color of each position corresponds to the number of iterations
of the inner loop. Lighter colors indicate more iterations while
darker colors indicate fewer iterations.

Hardware Performance Counters. Hardware Performance
Counters (HPCs) measure processor performance parameters
such as instruction cycles, cache hits, cache misses, branch
mispredicts, and more [92, Vol. 3B §20]. Users can directly
access these counters from user space using the rdpmc
instruction. In some of our experiments, we program these
counters to measure a performance parameter then we record
the contents of these counters before and after each five-
millisecond measurement period.

C. Qualitative Analysis

The aim of the qualitative analysis is to identify the main
leakage sources for each attack. First, we identify four po-
tential leakage sources by reviewing existing literature. To

on a baseline system (i7-7700 machine, website
classifier accuracy: 94.31+0.8%)

baseline system (19-12900KF machine, website
classifier accuracy: 47.6+£7.1%)

validate whether these sources are indeed the main contrib-
utors, we control and eliminate each leakage source based on
insights from technical blogs and Intel white papers, ensuring
that all leakage is eliminated, at least in specific scenarios. In
cases where leakage persists after eliminating several sources,
we hypothesize new potential leakage sources and conduct
experiments to validate these assumptions. Next, leveraging
the ability to eliminate all leakage in specific scenarios, we
apply the control variable method by configuring the system
to eliminate all other leakage sources while leaving one intact.
This enables us to test whether each source actually leaks
information.

Following Cook et al. [42], we use a website-fingerprinting
attack as a proxy for the level of leakage, with high recog-
nition accuracy indicating strong leakage capability. For the
first step of our qualitative analysis, we begin with four
known channels: competition with co-resident threads for CPU
time [54], interrupt handling [42], frequency scaling [21],
[56]-[58], and eviction from the cache hierarchy [25]. We
control each leakage source by modifying BIOS and operating
system settings, successfully eliminating information leakage
for the loop-counting and mwait attacks on both i7-7700 and
19-12900KF machines. This means that after eliminating these
sources, the attacks achieve almost random recognition accu-
racy. In the second step, we start with a system configuration
from the first step that completely eliminates all leakage and
then enable each channel individually. We find that with each
channel enabled, the loop-counting attack can still be launched
successfully, indicating that all identified channels contribute
to the loop-counting attack.

D. Quantitative Analysis

Identifying the main leakage sources enables the measure-
ment of each source’s contribution. The aim of the quantitative
analysis is to quantify the relative contribution of each channel
to the overall attack, which aids in better understanding the
root causes of the leakage observed by the attacker.

Methodology. To quantify the leakage, we conduct website-
fingerprinting attacks to collect attack data. Simultaneously,
we record several system and processor performance events
associated with each leakage source. We then compute the
Pearson correlation coefficient between the attack data and
each leakage source. This coefficient indicates the contribution
of each leakage source to the total leakage observed by the

attacker. We report the average and standard deviation of the
coefficient across all 10,000 traces.

We modify the inner loop of each attack to record system
and processor performance events using kernel interfaces and
hardware performance counters. For each five-millisecond
sample, we record the number of loop iterations, the number
of interrupts delivered to the attacker core, the total length of
handling interrupts in execution experienced by the attacker,
the attacker core frequency, and the number of cache misses of
the attacker core. We perform all of these measurements on an
unmodified system. In the following, we list the system and
processor performance events used to monitor each leakage
source.

Measuring Interrupt Count. We measure the number of
interrupts delivered to the attacker core using the /proc/
interrupts and /proc/softirgs interface. We mea-
sure before and after each five-millisecond sample and com-
pute the difference.

Measuring Interrupt Length. While we can easily measure
the total number of interrupts, there are no readily available
interfaces to measure the total handling time of interrupts with
fine granularity. Instead, we adopt the technique from Zhang
et al. [93]. The idea is based on the observation that when
an interrupt is handled by the kernel and control returns to
the attacker program with no special privileges, it causes two
observable effects. First, the processes can notice a large gap
between consecutive clock reads. Second, the CPU clears the
data segment registers (e.g., DS, ES, F'S, and GS). Therefore,
we set the GS register to 1 and modify the inner loop of each
attack to compare the previous clock measurement with the
current clock measurement. If we observe a time difference
exceeding 500 nanoseconds but less than 10 microseconds,
and the GS register is reset to 0, we classify the time difference
length as interrupt handling time.

Measuring Frequency. We measure the CPU_CLK_
UNHALTED.THREAD_ANY and CPU_CLK_UNHALTED.
REF_TSC performance events. The former counts the actual
cycles that the core executes, whereas the latter measures
wall-clock time as a count of nominal cycles ticking at a
model-specific frequency. These events have similar functions
to the APERF and MPERF Model Specific Registers (MSRs)
but can be accessed directly from the user space. The ratio
between the two registers (or between the two performance
events) gives the average frequency of the processor over a
given period of time [92, Vol. 3B §14.2].

Measuring Cache Activity., We measure the activity of
the data and instruction caches separately by measuring the
CYCLE_ACTIVITY_CYCLES_L3_MISS and FRONTEND_
RETIRED.L1I_MISS performance events. The former mea-
sures the number of cycles that a load instruction is stalled due
to a data cache miss, while the latter measures the number of
instructions that miss in the L1I cache.

IV. IDENTIFYING, CONTROLLING, AND ELIMINATING
POTENTIAL LEAKAGE SOURCES

In this section, we present the first step of the qualita-
tive analysis—identifying the main potential channels that

contribute to information leakage in website-fingerprinting
attacks and demonstrating that we can control them. We
start with four known channels, namely: competition with co-
resident threads on CPU time [54], interrupt handling [42],
frequency scaling [21], [56]-[58], and eviction from the cache
hierarchy [25]. We identify the levers and controls that the
BIOS and the operating system provide for controlling each of
the channels. Last, we evaluate the efficacy of these controls in
preventing flow of information through the channel for each of
the attacks we investigate. Our controls completely eliminate
information leakage for the loop-counting and mwait attacks
on 17-7700 and i9-12900KF machines, and significantly reduce
the leakage for the cache-occupancy attack.

A. CPU Time Contention

To eliminate the contention on the CPU time, we isolate the
attacker from every other program on the machine. Specif-
ically, we designate one core as the attacker core and only
allow the attacker to execute on this core; all other processes
are forced to execute on the remaining cores. We perform
this isolation via the i solcpus Linux kernel parameter. This
parameter prevents the kernel from automatically scheduling
any thread on the specified core. We then use the taskset
utility to explicitly schedule the attacker onto this core.

To further avoid the contention on core resources, we disable
hyperthreading. Combined with core isolation, this ensures
that the victim never executes on the same core as the attacker.
Hence, the attacker cannot observe the effects of the victim
execution on the microarchitectural state of the core.

B. Interrupts

Isolating cores with isolcpus will additionally move
the interrupt handling to non-isolated cores. However, in
several cases throughout the paper we need to manually move
interrupts. To do so, we use the irgbalance utility and
the /proc/irqg/[id]/smp_affinity interface. While
many interrupts can be moved, some cannot. We now discuss
how to remove the remaining interrupts.

Tickless. To remove timer interrupts, we put the kernel into a
so-called tickless mode. When running under this mode, timer
interrupts are disabled if the core has only a single thread
scheduled for execution. To use this mode, we compile the
kernel with the CONFIG_NO_HZ_FULL compile time option
and then use the nohz_ full kernel parameter to specify the
list of cores that can enter the tickless mode.

Tickless Constraints. Using tickless mode to ‘disable’ timer
interrupts has three constraints on the attack that we must con-
sider. Firstly, we must never execute a system call that would
cause the kernel to directly issue a timer interrupt. In particular,
we must never issue a system call to sleep. Secondly, our attack
implementation must be limited to a single thread. Finally,
we must never allow another thread to be scheduled onto the
attacker core. This includes our experimentation automation
infrastructure. The last two conditions are required because
without them there would be multiple processes scheduled on
the core, preventing the tickless mode.

google.com 75147 google.com 236356 google.com 157
[T T [[00 I
H il | 1 I
[T [T | |, o I
tmall.com 74574 tmall.com tmall.com
|11 NNV 1/ N 1 AN T Y T . 00O
I TV T W T T = S T I
WM [WOWT WO] 74000 NS 23°2%¢ I
youtube.com youtube.com youtube.com
(I T [[0 A I
(RN T T \ 73427 1 R Y| 236205 I 157
TR 0]
0 5 10 15 0 5 10 15 0 5 10 15
seconds 72854 seconds 236155 seconds 157
Fig. 5. A heatmap of cache-occupancy attack Fig. 6. A heatmap of the loop-counting attack Fig. 7. A heatmap of mwait attack after removing

after removing leakages (i7-7700 machine, website
classifier accuracy: 93.9+0.5%)

Verifying Constraints. We verify the first constraint through
manual code inspection. We ensure that the attack never
executes anything that could cause it to go to sleep. In cases
where we might need to sleep, we replace the call with a
busy loop that uses rdtscp to detect the elapsed time. We
verify the second and third constraints through the use of the
/sys/kernel/debug/sched/debug interface, ensuring
that we observe only a single thread on the attacker core.

RCU Callback Offloading. Read-Copy-Update (RCU) is a
synchronization mechanism that allows many Linux kernel
threads to concurrently read from a shared data structure.
Callbacks can be registered with the kernel to be executed
when a thread releases its reference to the structure. To
minimize the latency of the operation that releases the last
reference, the callback may be offloaded to another core. To
remove the interrupt associated with this offloading, we use
the rcu_nocbs kernel parameter to specify the list of cores
that cannot be used for RCU callback offloading.

Verifying Absence of Interrupts. We verify that we have
eliminated the effect of interrupts through the use of the
/proc/interrupts and /proc/softirgs interfaces.
These interfaces provide the total number of interrupts that
have been handled by the kernel since power on. The reported
interrupts are separated by types of interrupts and cores that
handle the interrupts. We access these interfaces at the start
and end of each trace, and compute the difference to obtain
the number of interrupts during the attack. In addition, we
use the CPU_CLK_UNHALTED.RINGO_TRANS performance
counter to monitor the number of transitions from user to
kernel mode.

We find that both methods almost always report zero
interrupts and zero transitions from user to kernel mode. In
rare cases, 0.48% of experiments, we observe some interrupts.
However, we do not observe many interrupts, and they do not
appear to be correlated with the victim behavior. For these
reasons, we consider the effects of interrupt handling to have
been eliminated from our experiments.

C. Frequency Scaling

Modern processors try to maintain the balance between
frequency, heat dissipation, and power budget. The main tool
for maintaining this balance is a mechanism for changing
the operating frequency and voltage, known as Dynamic
Voltage and Frequency Scaling (DVFS). Recent works have

after removing leakages (i7-7700 machine, website
classifier accuracy: 3.1+£0.7%)

leakages (19-12900KF machine, website classifier
accuracy: 1.0+0.0%)

shown how frequency scaling can be exploited to leak infor-
mation [21], [56]-[58], [91]. As before, we aim to control
leakage through frequency scaling by demonstrating that we
can completely remove the effect of DVFS on the attacker
core.

We start by disabling two BIOS features that allow the
processor to change its frequency, TurboBoost and SpeedStep.
We then instruct the operating system to fix the frequency to a
low enough value, ensuring that the processor always remains
within its allocated operating power budget and that the
processor will never exceed its maximum thermal threshold.
We achieve that using the cpufreg-set utility to set the
minimum and maximum allowed frequencies of all cores
to half of the base frequency of the processor (1.8 GHz).
Further, we set the power governor to performance and
write a value 0 to the /dev/cpu_dma_latency interface
to prevent the processor from entering any low power states.

D. Cache

We eliminate the possibility of the victim evicting attacker
memory by using Intel Cache Allocation Technology (CAT)
to partition the last-level cache. Specifically, we assign half
of the ways to the attacker core and the other half to the
remaining cores. Partitioning the last-level cache in this way
prevents the victim from unintentionally evicting attacker
memory from the cache, severing the channel between the
victim and the attacker. However, as we describe below, this
does not completely close all memory-based channels, and
some leakage remains.

E. Validating Leakage Elimination

We now move to measuring the effects of using our tech-
niques on the attacks.

Loop Counting and Mwait. We succeed in completely
eliminating leakage on our i7-7700 and i9-12900KF machines,
with similar results on both machines. Figure 6 and Figure 7
show heatmaps recorded using the loop-counting and mwait
attacks after we apply the steps to eliminate leakages. For
loop-counting, most of the data changes almost only by 1,
from 236255 to 236256. For the mwait, we observe that the
heatmaps consist of a single color. This is not an artifact of the
visualization; all samples within these traces are completely
identical, suggesting that we have completely eliminated leak-
age from the loop-counting and mwait attacks. This is in

stark contrast to Figure 3 and Figure 4, where we can clearly
distinguish websites just by looking at the heatmaps.

google.com 34497

T REN T’ 11,
T T
U0 T N YO0 1V COOMEVODUNNY {1V N

tmall.com
(ORI B R R

33955

A T T T
M My i Tl

youtube.com

33412

T O N T PO W ETD
AN e
O T T

5 10 15
seconds

32870

o

32328

Fig. 8. A heatmap of the loop-counting attack collected in the browser
environment using JavaScript after removing leakages (i9-12900KF machine,
website classifier accuracy: 4.34+0.4%)

As described in Section III-B, we first conducted the above
experiments with the attacker program written in a mix of
inline assembly and C, which provides better isolation and
allows us to gather more microarchitectural data. We then
validated whether our isolation mechanisms also eliminate
leakage in the browser environment by running the attacker
as malicious JavaScript code hosted on an attacker-controlled
website. Following Cook et al. [42], while the victim was ac-
cessing websites, we launched a separate browser that visited
the attacker-controlled site executing the loop-counting attack.
The only difference is that we constrained the attacker browser
to the isolated core. Figure 8 shows traces that appear entirely
random across websites and samples on the i9-12900KF. This
randomness arises because, even in isolation, the browser
spawns multiple processes, and context switches with their
associated interrupts introduce noise. The resulting accuracy
is 4.3£0.4%. For comparison, running the same experiment
without isolating any leakage source on the same machine
yields an accuracy of 88.5£1.5%. These results indicate that
our isolation mechanisms effectively eliminate leakage from
the loop-counting attack in the browser environment, thereby
broadening the applicability of our conclusion.

i5-8259U. With our i5-8259U machine, we are still able to
classify websites with 71.5+2.2% accuracy using the loop-
counting attack. We believe this is because our control over
each channel was ineffective. We note that although we have
partitioned the last-level cache using CAT, we still observed
cache misses. Further, we note the processor frequency can
still change despite setting a fixed frequency.

Cache Occupancy. Unfortunately, we cannot completely
eliminate the leakage measured by the cache-occupancy attack.
Figure 5 shows a heatmap for the cache-occupancy attack
when executed on the same system configuration with leakage
elimination. We note that we can still clearly distinguish
different websites from the obtained traces. Furthermore, when
we train a classifier on these traces, we achieve an accuracy of

91.9% in identifying websites. This suggests that the cache-
occupancy attack measures some additional channels that
cannot be measured by the loop-counting attack.

F. Remaining Leakage Sources

Having identified that a leakage remains detectable in the
cache-occupancy attack, we now seek to provide more insights
into the cause of this leakage. Several works have shown that
an attacker can measure contentions in inter-core intercon-
nects [35], [36], [94], last-level cache slice accesses [35], [36],
[94], memory controllers [95], and DRAM [59].

Experiment Design. While controlling all cross-core channels
is outside the scope of this work, we perform the following
experiment to clarify whether the remaining channel is formed
through the execution of memory access instructions them-
selves or whether it is formed through the contention in these
off-core components serving the memory accesses. We modify
the cache-occupancy attack such that all of its memory fits
within the private cache of the attacker core. Specifically, we
change the size of the linked list to 28 KB, which is slightly
smaller than the size of the L1 cache. We preload the linked list
into the cache before mounting the cache-occupancy attack.

Results. We obtain an accuracy of 1.43+0.3% when we mount
the attack under this configuration. This result suggests that
the remaining leakage can be entirely explained by off-core
memory accesses contending for off-core resources. We leave
the task of enumerating, controlling, and investigating these
off-core channels to future work.

V. VALIDATING EACH LEAKAGE SOURCE

The ability to eliminate leakage enables us to investigate the
second step of our qualitative analysis: testing which channels
actually leak information. We start with a system configuration
obtained from Section IV that completely eliminates all leak-
age, and enable each channel individually. That is, for each
channel, we configure the system so that leakage can only
occur through that channel. For that, we apply the steps to
control the leakage from all other channels, but do not control
the leakage from the evaluated channel. We then mount a
website-fingerprinting attack as described in Section III-B with
this system configuration; if we can distinguish websites, we
conclude that the channel does leak information. We find that
all identified channels are measurable by the loop-counting
attack. Monitoring these events related to each channel does
not require privileges.

To avoid non-inclusive caches, which interfere with our
validation of cache leakage, we focus on the i7-7700 ma-
chine. This also limits us to only using the loop-counting
attack because the architecture does not support the umwait
instruction that underlies the mwait attack.

A. CPU Time Contention

First, we test whether time and core resources contention is
a channel that leaks information. We skip the steps taken in
Section IV-A and manually move all interrupts away from the

google.com 236075

231612

tmall.com

M7 W N Il

I [W | T |

10 | I I Il
youtube.com

(RO [[|

(I T | |

T EN | (D
0 5

seconds

227150

I 222687
|

10 15
218224

Fig. 9. Traces recorded on i7-7700 with a configuration that allows leakage
from time contention (website classifier accuracy: 95.440.5%)

attacker core. We then mount a website-fingerprinting attack
under this configuration.

Figure 9 shows the results of this experiment. We achieve
an accuracy of 95.4+0.5% when we train a classifier on this
configuration.

B. Interrupt Leakage

Next, we test whether the interrupt handling is a channel that
leaks information. We skip the steps taken in Section IV-B
and then mount the website-fingerprinting attack. Since we
are still isolating the core with isolcpus, which moves
interrupts away from isolated cores, we measure no leakage
in this configuration. Instead, we manually move all interrupts
to the attacker core.

google.com 236084

(LT T | [1] | [l

T T | \ | |

(I [T} \ |
tmall.com

NN 1NN Y 10 [T]

[T I T T

[N T \
youtube.com

M MT T |

(I AN 1

I TN T]

10 15

235700

235316

234932

seconds 234548

Fig. 10. Traces recorded on i7-7700 with a configuration that allows leakage
from interrupts (website classifier accuracy: 95.31-0.8%)

When we perform this experiment and train a classifier
on this altered configuration, we achieve an accuracy of
95.3+0.8%. Figure 10 shows a heatmap of the resulting traces
in which we can clearly distinguish websites from each other.

C. Per-Device Interrupt Leakage

We note that the default configuration on our system bal-
ances the load of interrupts across each of the cores. That is,
interrupt requests from each device on the system are handled
by separate cores. For example, the operating system may
arbitrarily assign the first core to handle all interrupt requests
from the network interface and the second core to handle all
interrupt requests from the sound interface.

The combination of this behavior along with the results of
our previous experiments suggest that the choice of core to
mount an attack on may be important. If the attacker mounts
an attack on a core that does not handle any interrupts, they
will not see any leakage. Similarly, if the attacker mounts an
attack on a core that only handles interrupts from devices that
are uncorrelated with victim behavior, they may see little to
no leakage.

Experiment Design. We start with a system configuration ob-
tained from Section IV that completely eliminates all leakage.
Next, we move all interrupts from a specific device to the
attacker core and move all other interrupts to another core.
We then mount a website-fingerprinting attack as described
in Section III-B. We repeat this experiment for each device
in our system: the USB controller (USB), NVMe storage
drive (Storage), networking, graphics, sound, and the system
management engine (Management).

TABLE II
ACCURACY OF THE LOOP-COUNTING ATTACK ON OUR 17-7700 MACHINE
WHEN WE DELIVER INTERRUPTS FROM A SPECIFIC DEVICE TO THE
ATTACKER CORE.

Interrupt Accuracy
Networking 69.1 + 1.3%
Storage 53.1 +1.1%
Graphics 51.6 + 1.0%
Sound 4.9 +0.5%
Management 1.6 +0.3%
USB 1.5+ 0.3%

Results. Table II shows the results of this experiment. We
find that the accuracy varies significantly depending on which
device interrupts requests are delivered to the attacker core.
For example, interrupt requests from the network achieve
the highest accuracy at 69.1%, followed by interrupts from
the storage device at 53.1%. The relatively low accuracy for
sound-related interrupts can be explained by the fact that
many websites, such as google.com and baidu.com,
do not trigger sound activity. Since the system management
engine does not interact with web traffic, we observe almost
no management-related interrupts. In addition, because we
interact with our machines exclusively through remote access,
no USB interrupts are generated, and thus no leakage occurs
from that source.

D. Frequency Leakage

We now analyze the leakage through changes in frequency
due to DVFS. Similar to the previous section, we apply

the configuration from Section IV but skip the steps from
Section IV-C that would eliminate the leakage from DVFS.
We then mount a website-fingerprinting attack as described in
Section III-B.

google.com 548349
(T T T [T
T [T | W T T
1 L N A LTI saosas
tmall.com

(RIETINNON T W7 " W7 7T W77 W7]
(RMHETET T T T

[T |
youtube.com
(N T T []
(MOT 1T TT7 7 [T

|

| I 1 I | N

0 5 10 15
seconds

530720

I 521906
|

513092

Fig. 11. Traces recorded on i7-7700 with a configuration that allows leakage
from frequency changes (website classifer accuracy: 95.3+0.5%)

Figure 11 shows heatmaps generated from this experiment.
We find that we can clearly distinguish websites from each
other. When we train a classifier on traces recorded with
this configuration, we achieve an accuracy of 95.34+0.5%,
demonstrating that frequency scaling is a channel that leaks
information.

E. Cache Leakage

Finally, we investigate the effect of the cache. We repeat the
same process from the previous sections. That is, we apply the
configuration from Section I'V and skip the steps that eliminate
cache leakage from Section IV-D. We then mount the website-
fingerprinting attack described in Section III-B.

google.com 236256

[| I [T T |
[\ [|
il [1] [T 11

tmall.com

I T T W7 [T
(T | || | (W1
(W T I W WIT W

youtube.com

(IRETEONT T |1l
| MR
VAT AT (1 | |

T T

0 5 10 15
seconds

236238

236220

236201

236183

Fig. 12. Traces recorded on i7-7700 with a configuration that allows leakage
from cache evictions (website classifier accuracy: 95.2+0.6%)

We find that a classifier trained on traces recorded with
this configuration can easily distinguish websites with an
accuracy of 95.2%. Likewise, the heatmaps (Figure 12) show
that websites can be clearly distinguished.

Cache Attacks with no Memory Accesses. The loop-
counting attack that we use basically counts the number of
iterations of an empty loop that the attacker can perform in a
given time interval (Listing 2). As the attack does not access
memory, one could expect there to be no correlation between
the state of the cache and the execution time of the loop-
counting attack. Thus, the observation that the cache channel
conveys enough information for carrying the attack out is
somewhat counterintuitive. To explain the observation, we
now investigate the interplay between cache and loop-counting
attack.

Measuring Cache Misses. We repeat the experiment from the
previous section, but we instrument the loop-counting attack
to record the number of L1I and L1D cache misses. We do this
by programming performance counters to record the number
of FRONTEND_RETIRED.L1I_MISS_PS and MEM_LOAD_
RETIRED.L1_MISS_PS events during the attack.

As expected, we observe that there are no L1D cache
misses. Since the loop-counting attack does not perform any
memory accesses, beyond what is required to record samples,
there are simply no memory accesses to miss the L1D cache.
This leaves L1I cache misses, and indeed we do find a non-
zero number of L1I misses.

Root Cause Analysis. We hypothesize that the root cause
of this leakage is due to the inclusive shared last-level cache
(LLC) of the 17-7700. When a cache line is evicted from the
shared inclusive LLC, it is also evicted from the private caches
of each core—the L2, L1D, and L1I caches. Furthermore, the
LLC does not distinguish between data and instructions.

If the victim were to access a significant amount of memory,
they may inadvertently evict cache lines from the LLC that
contain the instructions for the loop-counting attack. This
causes delays in the loop-counting attack because the instruc-
tions are no longer available in the L1I cache and instead must
be fetched from system memory.

Non-Inclusive Caches. To test this hypothesis, we repeat the
same experiment on our i9-12900KF machine. This machine
has a non-inclusive LLC, meaning that when a cache line is
evicted from the LLC, it is not evicted from the private caches
of each core. When we do this, we indeed find that the number
of L1I cache misses is zero and that there is little to no cache
leakage measured by the loop-counting attack.

VI. QUANTIFYING EACH LEAKAGE SOURCE’S
CONTRIBUTION

The observation from the qualitative analysis, that mul-
tiple leakage sources carry enough information to enable
efficient website-fingerprinting attacks, calls into question the
conclusions of past works regarding the root cause of the
leakage they observe [18], [42]. Recall that each attack is a
combination of leakage sources. In this section, we develop
a metric for quantitatively analyzing the relative contribution
of each channel to the overall attack. We apply the system
and processor performance events outlined in Section III-D
to monitor each source. We then present the results of our
experiments and conclude by discussing the implications of
our findings.

TABLE III
CORRELATION BETWEEN ATTACK ITERATIONS AND VARIOUS SYSTEM AND PERFORMANCE EVENTS ON EACH OF OUR THREE MACHINES.

Cache Occupancy Loop Counting Mwait

Machine i9-12900KF i5-8259U i7-7700 i9-12900KF i5-8259U i7-7700 i9-12900KF
_ Interrupt Count 0.0440.01 0.014+0.03 —0.03£0.01 —0.04+£0.02 0.05£0.04 0.02+0.02 0.04£0.02
“E‘ Interrupt Length —0.24+£0.07 —0.24£0.09 —0.09+£0.02 —0.25£0.04 —0.34£0.09 —0.13£0.03 0.0640.03
'S Frequency 0.70+0.13 0.37£0.33 0.33+0.07 0.77+0.06 0.5740.08 0.84+0.11 0.42+0.14
& LI1I Cache —0.15+0.06 —0.13£0.04 0.01+0.03 0.04+0.05 —0.134+0.05 0.0340.03 —0.15£0.15

L3 Cache -0.99+0.01 -0.76+0.11 -0.84+0.13 —0.11£0.07 —0.46+0.09 —0.26+0.06 —0.07£0.05
N?.’ Interrupt Count —0.23£0.10 —0.55+£0.15 —0.13+0.06 —0.23£0.08 —0.51£0.10 —0.15+0.06 0.42+£0.12
8 Interrupt Length —0.37£0.10 —0.464+0.17 —0.15£0.05 —0.36£0.07 —0.494+0.11 —0.22+0.07 0.344+0.14
o Frequency 0.7040.13 0.3940.34 0.3240.07 0.78+0.06 0.5640.08 0.83+0.07 0.2240.13
20 L1I Cache —0.20£0.10 —0.454+0.15 —0.15£0.04 —0.20£0.08 —0.43£0.09 —0.17+0.07 0.284+0.13
@ L3 Cache -0.99+0.01 -0.74+£0.10 -0.82+0.16 —0.25+0.08 -0.61+£0.07 —0.30+0.06 0.0840.10

1 Baseline refers to the default interrupt configuration.

2 Single Core refers to the configuration where all interrupts are delivered to the attacker core.

A. Methodology

We follow the methodology outlined in Section III-D.
Specifically, we modify the inner loop of each attack to record
several system and processor performance events associated
with each leakage source. We then compute the Pearson cor-
relation coefficient between the attack data and each leakage
source. This coefficient indicates the contribution of each
leakage source to the total leakage observed by the attacker.
We report the average and standard deviation of the coefficient
across all 10,000 traces.

Specifically, for each five-millisecond sample, we record the
number of loop iterations, the number of interrupts delivered
to the attacker core, the total length of interrupt handling
experienced by the attacker, the attacker core frequency, and
the number of cache misses on the attacker core.

B. Contributions of Sources

We now report the correlation coefficient between each
leakage source and the number of iterations of the attack loop
for each of the attacks. We designate the third core as the
attacker core and perform our experiments on this core. Since
the operating system assigns specific cores to handle interrupts
from specific devices, we further investigate the impact of
interrupts on these attacks under an extreme case where all
movable interrupts are moved to the attacker core. The results
of the three attacks are shown in Table III.

The Pearson correlation coefficient can take both positive
and negative values. A positive value indicates a positive
relationship between the leakage source and the attack data.
The larger the value observed in the leakage source, the larger
the corresponding attack data. For example, with frequency
scaling, a higher frequency allows the attack to collect more
data within a limited time. A negative value indicates an
inverse relationship. For instance, in the cache-occupancy
attack, a higher number of L3 cache misses means the attack
can access less cache, thereby reducing the amount of attack
data. To enable a fair comparison, we report and analyze
only the absolute values of the correlation coefficients in the
following discussion.

Cache Occupancy. We find that the correlation between L3
Cache and the cache-occupancy attack is the highest of the
measured events. This is irrespective of whether the machine
features an inclusive (i5-8259U and i7-7700) or non-inclusive
(19-12900KF) cache or whether interrupts are moved to the
attacker core or not. This suggests that the cache is the primary
contributor to the leakage measured by the cache-occupancy
attack. We note that Frequency and Interrupt Length are also
highly correlated with the cache-occupancy attack. Correlation
with Interrupt Count increases when interrupts are moved to
the attacker core.

Loop Counting. Frequency exhibits the highest correlation
across all our desktop machines in the baseline configuration,
significantly exceeding that of other sources. When interrupts
are redirected to the attacker’s core, we observe an enhanced
correlation between Interrupt Count and the loop-counting at-
tack. On the 19-12900KF and i7-7700, Frequency continues to
dominate in terms of correlation, again substantially surpassing
other leakage sources, indicating that frequency scaling serves
as the primary leakage source in these machines.

However, when interrupts are redirected to the attacker’s
core on the NUC (i5-8259U), the L3 cache exhibits the
highest correlation with the loop counting attack (0.61 + 0.07),
followed by frequency (0.56 £ 0.08) and interrupt count (-0.51
+ 0.08). A plausible explanation is that the large number of
interrupts forces the CPU to repeatedly load multiple interrupt
handlers, incurring increased L1I and L3 cache misses. This
effect is likely amplified on the NUC due to its relatively
small L3 cache (6 MB) compared with the i9-12900KF (30
MB) and the i7-7700 (8 MB). To further examine this, we
measured the correlation on the NUC between Interrupt Count
and cache activity under the same configuration. The results
show a correlation of 0.91 + 0.03 with the L1I cache and
0.75 = 0.04 with the L3 cache, supporting our interpretation.
Moreover, because the L3 cache is also affected by frequency,
the strong correlation between the L3 cache and the loop
counting attack reflects the combined influence of interrupts
and frequency. Given that frequency itself shows a comparable
correlation, we conclude that both interrupts and frequency
contribute to the observed leakage on the NUC.

MWAIT. We report the results for our i19-12900KF machine
only as it is the only machine to support the umwait
instruction necessary for the attack. We find that Frequency
has the highest correlation with the mwait attack under the
baseline configuration and that Interrupt Count shows the
highest correlation when interrupts are moved to the attacker
core.

Conclusion. As shown in Table III, the cache-occupancy
attack most strongly correlates with events related to last-level
cache activities, , which aligns with the proposal of Shus-
terman et al. [18]. For the loop-counting attack, we identify
frequency scaling as the primary leakage source in most cases,
and a combination of system interrupts and frequency scaling
in other cases, thereby extending the proposal of Cook et
al. [42]. For the mwait attack, we identify system interrupts
and frequency scaling as the primary leakage sources, thereby
extending the proposal of Zhang et al. [53].

Since we have demonstrated that each leakage source can
leak enough information for a successful attack in Section V,
it is challenging to prevent cross-core leakage from a system-
level redesign perspective, as redesigning all of these microar-
chitectural channels would significantly impact performance.
Instead of solely focusing on redesigning specific side chan-
nels, we advocate for mitigation strategies aimed at reducing
the coarse-grained measurement capabilities of attacks. This
includes methods like randomized timers or noise injection.
Notably, injecting noise into the cache source for the cache-
occupancy attack, and into the DVFES and interrupt sources for
the loop-counting attack, along with the primary contributor
identified in Section VI, could be a comparably more effective
approach.

Comparison with Cook et al. In previous work, Cook et
al. [42] suggest that the primary contributor to the cache-
occupancy and loop-counting attacks is leakage from inter-
rupts. They remove one leakage source at a time and observe
accuracy decreases, with the removal of the IRQ interrupts
leakage source resulting in the highest decrease, from 95.2%
to 88.3%. We believe the discrepancy between our results and
theirs arises from different methods of measuring contribu-
tions, particularly the use of machine learning accuracy as a
metric for channel contribution. We note that accuracy can
increase even when information is removed. Figure 3 shows a
baseline configuration with an accuracy of 94.3+£0.8%, while
Figures 9 to 12 show configurations with only one leakage
source, achieving no less than 95.2% accuracy. Instead, we
use the Pearson correlation coefficient as an estimate of the
contribution.

VII. DISCUSSION
A. Attacks via Individual Sources

In this subsection, we perform novel co-located website-
fingerprinting attacks using data from each individual channel,
collected in Section III-D and Section VI-B. Instead of relying
on loop-counting, cache-occupancy, or mwait attacks, we in-
dependently monitor each leakage source from corresponding
system and performance events at 5 ms intervals and feed the
collected data into the same classifier described in Section III.

TABLE IV
ACCURACY BASED ON DATA FROM EACH CHANNEL.

Baseline! Single Core?
Data Source
i5-8259U i7-7700 i5-8259U i7-7700

Loop Counting 92.5+1.0% 95.7£1.0% 92.7+1.2% 94.6+0.8%
Cache Occupancy 93.8+1.0% 95.6+1.0% 93.6+0.8% 95.4+0.7%
Interrupt Count 83.3+0.9% 85.3+1.4% 89.1+1.6% 87.4+1.9%
Interrupt Length 77.84+2.0% 77.9+£2.6% 85.6+2.0% 87.0+1.6%
Frequency 93.4+0.7% 95.5+£0.6% 93.3+1.0% 94.7+0.9%
L1I Cache 63.5+2.5% 77.3+1.9% 88.2+1.3% 83.3+2.0%
L3 Cache 87.7£1.5% 93.3+1.0% 90.4+1.2% 92.6+0.9%

! Baseline refers to the default interrupt configuration.
2 Single Core refers to the configuration where all interrupts are delivered to the
attacker core.

As shown in Table IV, monitoring different leakage chan-
nels individually, rather than relying on timing or coarse-
grained system performance measurements, also achieves
comparable attack accuracy to loop-counting and cache-
occupancy attacks, particularly for the frequency and L3 Cache
leakage channels. Frequency shows similar accuracy to loop-
counting and cache-occupancy across different settings on both
the 15-8259U and i7-7700. These results further support the
contribution of the frequency and L3 Cache leakage channels,
as discussed in Section VI-B.

B. Countermeasures

As shown in Section IV, eliminating each leakage source
requires major system redesigns, which is not feasible. Fur-
thermore, in Section V, we conclude that focusing on a
single channel, or even a few channels, is insufficient when
designing defenses. Every channel may independently leak
enough information to enable a successful attack, and thus
all channels must be considered. Therefore, we recommend
mitigation strategies that target the coarse-grained measure-
ment capabilities of attacks, such as randomized timers or the
injection of noise, rather than focusing solely on redesigning
one or several specific side channels. Combined with the
primary contributor identified in Section VI, injecting noise
from the cache source for the cache-occupancy attack, and
from DVFS and interrupt sources for the loop-counting attack,
could be comparably more effective.

Randomized Timers. Modern browsers have employed sev-
eral strategies to limit an attacker’s observation capabilities
by reducing the precision of timers. Two typical techniques
are quantized timers and jittered timers. The former, used in
Tor Browser, fixes the timer resolution to 100 ms so that
the timer output is quantized to multiples of 100 ms. The
latter, used in Chrome, adds a small random perturbation
to the returned value, typically within 0.2 ms. However, as
shown by Cook et al. [42], increasing the timer resolution
or adding small random noise is insufficient to resist attacks,
since the adversary can still achieve an accuracy of 86.0% to
96.6% under these defenses. To address this, Cook et al. [42]
propose a randomized timer that increases monotonically with
random increments at random intervals. This design causes the
reported time to deviate randomly from the real time by up to

about 100 ms, achieving 1.0% top-1 accuracy and 5.1% top-
5 accuracy for loop-counting attacks. While the randomized
timer is effective in mitigating website fingerprinting attacks, it
may negatively affect applications that require high-resolution
timers, such as online games.

Besides, even if randomized timers are deployed in the
browser, prior work has shown that attackers can bypass
such defenses. For example, Kim et al. [96] demonstrate
how to construct a high-resolution timer without relying on
browser-provided clocks, while Katzman et al. [97] amplify
subtle timing differences to make them observable even with
coarse-grained timers. A feasible alternative for a website-
fingerprinting attacker is to repurpose the loop-counting attack
as a timing source while using the cache-occupancy attack as
the actual side channel.

Adding Noise. Shusterman et al. [18] introduce cache noise
using Mastik [98] to generate random cache accesses. Specif-
ically, it repeatedly evict the entire last-level cache, which
causes the cache-occupancy attack to achieve less than 1% ac-
curacy when using the classifier. Cook et al. [42] add a Chrome
extension that generates thousands of interrupts by scheduling
activity bursts and network events. Their spurious interrupt
countermeasure reduces the accuracy of the loop-counting
attack from 95.7% to 62.0%. Additionally, to defend against
cross-app information leaks on iOS, Wang et al. [99] use
probabilistic search to approximate an optimal subset of the
channels that expose the most information, gradually injecting
noise into each channel one by one until the result reaches
a pre-defined threshold. After deploying their mitigation, the
accuracy of website-fingerprinting decreases from 93.7% to
1.0%. The above three methods are theoretically effective for
mitigating co-located website-fingerprinting attacks, though
the more effective the mitigation, the greater the performance
loss for the browser. We use the cache-occupancy attack
as an example. As shown by Shusterman et al. [18], after
injecting cache-access noise into the cache-occupancy attack,
the accuracy decreases to less than 1%. However, this defense
also incurs a non-negligible performance cost: on average,
the system experiences a 5% slowdown on the SPEC 2006
benchmark, with the worst case reaching 14% on bwave.

VIII. CONCLUSION

In this work, we introduce a framework to analyze the
root causes of three co-located website-fingerprinting attacks.
We use qualitative analysis to identify and validate the main
leakage sources for each attack. Through quantitative analysis,
we determine the leakage source that contributes the most to
the success of the attack. Since each leakage source can leak
enough information for a successful attack, defending at the
system level is infeasible, as it would require major system
redesigns. Therefore, we recommend defending against the
coarse-grained measurement capabilities of attacks by using
methods such as randomized timers or the injection of noise.

Our results further highlight the need for a transparent
interface between the microarchitecture of modern processors
and the software systems that run on them. In the meantime,
we believe that our methodology can help to further the

understanding of coarse-grained microarchitectural attacks and
help inform the design of future mitigations.

REFERENCES

[1] A. C. Aldaya, C. P. Garcia, L. M. A. Tapia, and B. B. Brumley, “Cache-
timing attacks on RSA key generation,” in TCHES, 2019.

[2] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,” in
Asiacrypt, 2009, pp. 667-684.

[3] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How SGX
amplifies the power of cache attacks,” in CHES, 2017, pp. 69-90.

[4] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in CT-RSA, 2006, pp. 1-20.

[5] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom,
“The 9 lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS
implementations,” in /EEE SP, 2019, pp. 435-452.

[6] Y. Yarom and K. Falkner, “Flush+Reload: a high resolution, low noise,
L3 cache side-channel attack,” in USENIX Security, 2014, pp. 719-732.

[7]1 D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attacking branch predictors to bypass ASLR,” in MICRO, 2016, pp. 1-
13.

[8] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU,” in NDSS, 2017.

[9]1 R.Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space ASLR,” in /[EEE SP, 2013, pp. 191-205.

[10] F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi, “Software grand exposure: SGX cache attacks are practical,”
in WOOT, 2017.

[11] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, ‘“Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in USENIX Security, 2018, pp. 991-1008.

[12] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T.-H. Lai, “SgxPectre:
Stealing intel secrets from SGX enclaves via speculative execution,” in
IEEE SP, 2020, pp. 28-37.

[13] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Security,
2015, pp. 897-912.

[14] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Man-
gard, “Practical keystroke timing attacks in sandboxed JavaScript,” in
ESORICS, 2017, pp. 191-209.

[15] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in ACNS, 2018, pp. 83—
102.

[16] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in JavaScript and their
implications,” in CCS, 2015, pp. 1406-1418.

[17] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom, “Prime+Probe 1, JavaScript 0: Overcoming browser-based
side-channel defenses,” in USENIX Security, 2021, pp. 2863-2880.

[18] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in USENIX Security, 2019, pp. 639-656.

[19] P. Cronin, X. Gao, H. Wang, and C. Cotton, “An exploration of ARM
system-level cache and GPU side channels,” in ACSAC, 2021, pp. 784—
795.

[20] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: GPU side channel attacks are practical,” in CCS,
2018, pp. 2139-2153.

[21] H. Taneja, J. Kim, J. J. Xu, S. van Schaik, D. Genkin, and Y. Yarom,
“Hot pixels: Frequency, power, and temperature attacks on GPUs and
ARM SoCs,” USENIX Security, 2023.

[22] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in /EEE SP, 2019,
pp. 1-19.

[23] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen,
and Y. Yarom, “Spook.js: Attacking Chrome strict site isolation via
speculative execution,” in /EEE SP, 2022, pp. 699-715.

[24] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in USENIX Secu-
rity, 2020, pp. 2003-2020.

[25] FE Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in JEEE SP, 2015, pp. 605-622.

[26] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]
[52]

(53]

(541

M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in /JEEE SP, 2019, pp. 888-904.

O. Aciigmez, S. Gueron, and J.-P. Seifert, “New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures,”
in IMACC, 2007, pp. 185-203.

0. Aciicmez, C. K. Kog, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in CT-RSA, 2006, pp. 225-242.

D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“BranchScope: A new side-channel attack on directional branch predic-
tor,” in ACM SIGPLAN Notices, 2018, pp. 693-707.

T. Zhang, K. Koltermann, and D. Evtyushkin, “Exploring branch pre-
dictors for constructing transient execution trojans,” in ASPLOS, 2020,
pp. 667-682.

B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks,” in
USENIX Security, 2018, pp. 955-972.

J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, “TagBleed: Breaking
KASLR on the isolated kernel address space using tagged TLBs,” in
EuroS&P, 2020, pp. 309-321.

S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi, “Malicious
Management Unit: Why stopping cache attacks in software is harder
than you think,” in USENIX Security, 2018, pp. 937-954.

R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,” in
USENIX Security, 2021, pp. 645-662.

J. Wan, Y. Bi, Z. Zhou, and Z. Li, “MeshUp: Stateless cache side-channel
attack on CPU mesh,” in IEEE SP, 2022, pp. 1506-1524.

O. Aciigmez and J.-P. Seifert, “Cheap hardware parallelism implies
cheap security,” in FDTC, 2007, pp. 80-91.

A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
speculative execution through port contention,” in CCS, 2019, pp. 785-
800.

A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcia, and N. Tuveri,
“Port contention for fun and profit,” in IEEE SP, 2019, pp. 870-887.
J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. A. Faruque, “Leaky DNN:
Stealing deep-learning model secret with GPU context-switching side-
channel,” in DSN, 2020, pp. 125-137.

R. Owens and W. Wang, “Non-interactive OS fingerprinting through
memory de-duplication technique in virtual machines,” in I[PCCC, 2011,
pp. 1-8.

J. Cook, J. Drean, J. Behrens, and M. Yan, “There’s always a bigger
fish: A clarifying analysis of a machine-learning-assisted side-channel
attack,” in ISCA, 2022, pp. 204-217.

N. Matyunin, Y. Wang, T. Arul, K. Kullmann, J. Szefer, and S. Katzen-
beisser, “MagneticSpy: Exploiting magnetometer in mobile devices for
website and application fingerprinting,” in WPES@CCS, 2019, pp. 135-
149.

B. Giilmezoglu, “XAl-based microarchitectural side-channel analysis for
website fingerprinting attacks and defenses,” IEEE TDSC, pp. 4039-
4051, 2021.

B. Giilmezoglu, T. Eisenbarth, and B. Sunar, “Cache-based application
detection in the cloud using machine learning,” in AsiaCCS, 2017, pp.
288-300.

Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in ACSAC, 2006, pp. 473—482.

C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation
for web sites within the browser,” in USENIX Security, 2019, pp. 1661—
1678.

M. B. Tracker, “SVG filter timing attack,” 2013. [Online]. Available:
https://bugzilla.mozilla.org/show_bug.cgi?id=711043

Chromium Project, “Timing attack on denormalized floating
point arithmetic in SVG filters circumvents same-origin policy,”
2016. [Online]. Available: https://bugs.chromium.org/p/chromium/
issues/detail?id=615851

M. Patrignani and M. Guarnieri, “Exorcising spectres with secure
compilers,” in CCS, 2021, pp. 445-461.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard,
“KASLR is dead: Long live KASLR,” in ESSos, 2017, pp. 161-176.
Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time protection: The
missing OS abstraction,” in EuroSys, 2019, pp. 1:1-1:17.

R. Zhang, T. Kim, D. Weber, and M. Schwarz, “(m)wait for it: Bridging
the gap between microarchitectural and architectural side channels,” in
USENIX Security, 2023.

B. W. Lampson, “A note on the confinement problem,” Communications
of the ACM, pp. 613-615, 1973.

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
(71]
[72]
[73]
[74]
[75]
[76]

(771

[78]

[79]
[80]

[81]

[82]
[83]
[84]

[85]

G. Irazoqui Apecechea, T. Eisenbarth, and B. Sunar, “S$A: A shared
cache attack that works across cores and defies VM sandboxing - and
its application to AES,” in IEEE SP, 2015, pp. 591-604.

Y. Wang, R. Paccagnella, E. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power side-channel attacks into
remote timing attacks on x86,” in USENIX Security, 2022.

Y. Wang, R. Paccagnella, A. Wandke, Z. Gang, G. Garrett-Grossman,
C. W. Fletcher, D. Kohlbrenner, and H. Shacham, “DVFS frequently
leaks secrets: Hertzbleed attacks beyond SIKE, cryptography, and CPU-
only data,” in JEEE SP, 2023.

C. Liu, A. Chakraborty, N. Chawla, and N. Roggel, “Frequency throttling
side-channel attack,” in CCS, 2022, pp. 1977-1991.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-CPU attacks,” in USENIX Se-
curity, 2016, pp. 565-581.

V. van der Veen and B. Gras, “DramaQueen: Revisiting side channels
in DRAM,” in DRAMSec, 2023.

Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A timing attack
on OpenSSL constant-time RSA,” JCEN, pp. 99-112, 2017.

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-
channel attacks: Bypassing SMAP and kernel ASLR,” in CCS, 2016, pp.
368-379.

S. Seonghun, D. Debopriya Roy, and G. Berk, “DefWeb: Defending
user privacy against cache-based website fingerprinting attacks with
intelligent noise injection,” in ACSAC, 2023, pp. 379-393.

M. Li, K. Bu, C. Miao, and K. Ren, “Treasurecache: Hiding cache
evictions against side-channel attacks,” IEEE TDSC, vol. 21, no. 5, pp.
4574-4588, 2024.

Q. Wang, X. Zhang, H. Wang, Y. Gu, and M. Tang, “BackCache:
Mitigating contention-based cache timing attacks by hiding cache line
evictions,” arXiv preprint arXiv:2304.10268, 2023.

A. Hintz, “Fingerprinting websites using traffic analysis,” in PETS, 2002,
pp. 171-178.

D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial
naive-Bayes classifier,” in CCSW, 2009, pp. 31-42.

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in Onion Routing based anonymization networks,” in WPES,
2011, pp. 103-114.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in CCS, 2012,
pp. 605-616.

X. Gong, N. Borisov, N. Kiyavash, and N. Schear, “Website detection
using remote traffic analysis,” in PETS, 2012, pp. 58-78.

T. Wang and 1. Goldberg, “Improved website fingerprinting on Tor,” in
WPES, 2013, pp. 201-212.

M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in CCS, 2014, pp. 263-274.
J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique,” in USENIX Security, 2016, pp. 1187-1203.
A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale,” in NDSS, 2016.
V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” NDSS, 2018.
R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz, “Inside job:
Applying traffic analysis to measure Tor from within,” in NDSS, 2018.
S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in CCS, 2018, pp. 1977-
1992.

X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in CCS, 2014, pp. 227-238.

X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion
sensitive website fingerprinting defense,” in WPES, 2014, pp. 121-130.
R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website
fingerprinting defense,” in WPES, 2014, pp. 131-134.

T. Wang and I. Goldberg, “Walkie-Talkie: An efficient defense against
passive website fingerprinting attacks,” in USENIX Security, 2017, pp.
1375-1390.

G. Cherubin, J. Hayes, and M. Judrez, “Website fingerprinting defenses
at the application layer,” PoPETs, pp. 186-203, 2017.

F. Rauscher, A. Kogler, J. Juffinger, and D. Gruss, “IdleLeak: Exploiting
idle state side effects for information leakage,” in NDSS, 2024.

T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks
of modular exponentiation in smartcards,” in CHES, 1999, pp. 144-157.
S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards, 2008.

https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugs.chromium.org/p/chromium/issues/detail?id=615851
https://bugs.chromium.org/p/chromium/issues/detail?id=615851

[86]

(871

[88]
(891

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[971

[98]
(991

Z. Zhang, S. Liang, F. Yao, and X. Gao, “Red Alert for Power Leakage:
Exploiting Intel RAPL-induced side channels,” in AsiaCCS, 2021, pp.
162-175.

M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks on
x86,” in IEEE SP, 2021, pp. 355-371.

M. Lipp, D. Gruss, and M. Schwarz, “AMD prefetch attacks through
power and time,” in USENIX Security, 2022, pp. 643—-660.

AMD Corporation, “Amd CVE-2020-12912,” 2020. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2020-12912

Intel Corporation, “Intel CVE-2020-8694,” 2020. [Online].
Available: https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00389.html

D. R. Dipta and B. Gulmezoglu, “Df-sca: Dynamic frequency side
channel attacks are practical,” in Proceedings of the 38th Annual
Computer Security Applications Conference, 2022, pp. 841-853.

Intel Corporation, “Intel 64 and IA-32 architectures software
developer’s manual,” 2023. [Online]. Available: https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html

X. Zhang, Z. Zhang, Q. Shen, W. Wang, Y. Gao, Z. Yang, and J. Zhang,
“SegScope: Probing fine-grained interrupts via architectural footprints,”
in HPCA. IEEE, 2024, pp. 424-438.

M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and M. Yan,
“Don’t mesh around: Side-channel attacks and mitigations on mesh
interconnects,” in USENIX Security, 2022, pp. 2857-2874.

Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel protection for
a shared memory controller,” in HPCA, 2014, pp. 225-236.

J. Kim, S. Van Schaik, D. Genkin, and Y. Yarom, “ileakage: browser-
based timerless speculative execution attacks on apple devices,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 2038-2052.

D. Katzman, W. Kosasih, C. Chuengsatiansup, E. Ronen, and Y. Yarom,
“The gates of time: Improving cache attacks with transient execution,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
1955-1972.

Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” 2016.
Z. Wang, J. Guan, X. Wang, W. Wang, L. Xing, and F. Alharbi, “The
danger of minimum exposures: Understanding cross-app information
leaks on iOS through multi-side-channel learning,” 2023.

Yusi Feng received the Ph.D. degree in computer
systems organization from Institute of Information
Engineering, Chinese Academy of Sciences, Beijing,
China, in 2025. She is a postdoctoral researcher at
the Southern University of Science and Technology.
Her research interests include system security and
side-channel attacks.

Sioli O’Connell is pursing a Ph.D. degree at the
University of Adelaide. His thesis on microarchi-
tectural side-channel attacks in browsers has been
accepted and he expects to receive the degree in
September 2025. His research interests include side-
channel attacks, web browsers, and computer archi-
tecture.

Xin Zhang received the B.Sc. degree in information
security from Hunan University in 2022. He is
currently pursuing the Ph.D. degree with Peking
University, Beijing, China. His research interests
include system security, computer architecture and
side channel attack.

Chitchanok Chuengsatiansup is a Professor of
Cybersecurity at the Hasso-Plattner Institute and
the University of Potsdam. Her research aims at
enhancing security and efficiency of mechanisms
to protect sensitive information. She is interested
in analyzing and optimizing interrelated factors to
achieve high security protection while maintaining
high performance.

Daniel Genkin is an Alan and Anne Taetle Early
Career Associate Professor at the School of Cyber-
security and Privacy at Georgia Tech. His research
interests are in system security and cryptography.
He is interested in both theory and practice with
particular interests in side-channel attacks, hardware
security, cryptanalysis, secure multiparty computa-
tion (MPC), verifiable computation and SNARKS.

Yuval Yarom is a Professor of Computer Security
at Ruhr University Bochum. His research focuses on
the interface between the software and the hardware.
In particular, He is interested in the discrepancy
between the way that programmers think about soft-
ware execution and the concrete execution in modern
processors.

Yingian Zhang (Senior Member, IEEE) is a pro-
fessor with the Department of Computer Science
and Engineer ing, Southern University of Science
and Technology. His research interest include system
security, including side channels, trusted and confi-
dential computing, and cloud security.

Zhi Zhang (Member, IEEE) received the Ph.D.
degree from The University of New South Wales. He
is a Lecturer at The University of Western Australia.
His current research interests include hardware secu-
rity, system security, and their intersections with Al
security. He was a recipient of USENIX SECURITY
2024 Distinguished Paper Award and ASIACCS
2023 Distinguished Paper Award. He serves as an
Associate Editor for IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING. He
also serves on the Program Committees for ASP-

LOS, DSN, ASIACCS and WWW.

https://nvd.nist.gov/vuln/detail/CVE-2020-12912
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

	Introduction
	Background and Related Work
	Caches
	Interrupts
	Website-Fingerprinting Attacks
	Software-Based Power Side Channels

	Experimental Framework
	Experimental Setup
	Attack Descriptions
	Qualitative Analysis
	Quantitative Analysis

	Identifying, Controlling, and Eliminating Potential Leakage Sources
	CPU Time Contention
	Interrupts
	Frequency Scaling
	Cache
	Validating Leakage Elimination
	Remaining Leakage Sources

	Validating Each Leakage Source
	CPU Time Contention
	Interrupt Leakage
	Per-Device Interrupt Leakage
	Frequency Leakage
	Cache Leakage

	Quantifying Each Leakage Source’s Contribution
	Methodology
	Contributions of Sources

	Discussion
	Attacks via Individual Sources
	Countermeasures

	Conclusion
	References
	Biographies
	Yusi Feng
	Sioli O'Connell
	Xin Zhang
	Chitchanok Chuengsatiansup
	Daniel Genkin
	Yuval Yarom
	Yinqian Zhang
	Zhi Zhang

