
1

Fantastic Interrupts and Where to Find Them:
Exploiting Non-movable Interrupts on x86

Xin Zhang, Qingni Shen, Zhi Zhang, Yansong Gao, Jiajun Zou, Yi Yang, Zhonghai Wu

Abstract—While interrupts play a critical role in modern
OSes, they have been exploited as a wide range of side chan-
nel attacks to break system confidentiality, such as keystroke
interrupts, graphic interrupts and network interrupts. However,
as previous attacks mainly focus on the exploitation of movable
interrupts, they are required to determine which core is handling
the target interrupts before their attack, which is non-trivial.
The exploitability of non-movable interrupts, which cannot be
reassigned by privileged softwares at will, remains unclear. In this
paper, we conduct an empirical study on exploitable non-movable
interrupts and their contribution to interrupt-based side-channel
leakages in x86-based systems. We propose a dynamic analysis
technique to investigate how various types of non-movable in-
terrupts are influenced by different workloads. We then conduct
a model fingerprinting attack as the benchmark to show that 7
types of non-movable interrupts are exploitable. To demonstrate
the viability of these non-movable interrupts, we have created two
concrete side channels, called ThermalScope and TimerScope.
Specifically, ThermalScope exploits the thermal event interrupts
that are triggered only when the CPU temperature exceeds a pre-
determined threshold, and TimerScope exploits timer interrupts
that are activated regularly to enable the process schedule.
Both techniques are adaptable to different attack scenarios,
functioning regardless of whether the attacker and victim share
the same core or reside on separate cores. Last, we successfully
apply them to mount realistic case studies, ranging from con-
structing cross-core covert channels to breaking kernel address
space layout randomization. We also demonstrate successful DNN
model fingerprinting attacks under browser scenarios when the
frequency scaling is disabled and attacker core is isolated from
movable interrupts, where previous HertzBleed, ThermalBleed,
and movable interrupt-based attacks are ineffective.

Index Terms—Side channel attacks, Interrupts, x86 CPU,
Computer architecture.

I. INTRODUCTION

INTERRUPTS play a critical role in a modern operating
system (OS), facilitating key functions such as efficient

time-sharing, real-time processing, and exception handling.
When an interrupt occurs, it triggers a context switch to the
kernel, allowing the process scheduler to preempt the running
process and execute the appropriate interrupt handler [1]–[4].

This work was supported by the National Key Research and Development
Program of China (No.2022YFB2703301) and the Science and Technol-
ogy Development Program of Two Districts in Xinjiang Province, China
(No.2024LQ03004). Corresponding authors: Q. Shen and Z. Zhang.

X. Zhang, Q. Shen, J. Zou, Y. Yang and Z. Wu are with the School of
Software and Microelectronics, Peking University, Beijing 100871, China,
also with the National Engineering Research Center for Software Engineering,
Peking University, Beijing 100871, China, and also with the PKU-OCTA
Laboratory for Blockchain and Privacy Computing, Peking University, Beijing
100871, China. E-mail: qingnishen@ss.pku.edu.cn.

Z. Zhang and Y. Gao are with the department of Computer Science and
Software Engineering, University of Western Australia, Perth, WA 6009,
Australia. E-mail: zzhangphd@gmail.com.

TABLE I
THE TAXONOMY OF X86-BASED INTERRUPT SIDE CHANNEL ATTACKS.

OUR WORK, FOR THE FIRST TIME, CONDUCTS A SYSTEMATIC STUDY OF
INFORMATION LEAKAGE INDUCED BY NON-MOVABLE INTERRUPTS.

Interrupts Non-movable

NDSS’17 [13], ESORICS’17 [12], ESORICS’23 [10], NDSS’24 [8] Keystroke Interrupts ×

TDSC’21 [6] Graphic Interrupts ×

SEC’22 [7], NDSS’24 [8], ESORICS’23 [10] Network Interrupts ×

This Work Thermal Event Interrupts, Timer Interrupts, etc
√

However, the execution of these handler functions leaves ob-
servable micro-architectural/architectural footprints that persist
even after returning to userspace, making interrupts observable
to an unprivileged attacker [5]–[10]. As interrupts are critical
indicators of system activities, the attacker can infer the
activities via observing interrupts.

In recent decades, various exploitable interrupts are iden-
tified, with attacks successfully compromising system confi-
dentiality, as outlined in Table I. Specifically, keystroke inter-
rupts are generated when a user presses keyboard. Since the
interval between every two consecutive keystrokes correlates
with user inputs, the inputs can be inferred via keystroke-
based interrupts [11]–[13]. Besides, when GPUs process dif-
ferent workloads, they generate distinct patterns of graphic
interrupts. With this observation, Ma et al. [6] exploit the
graphic interrupts to identify different activities inside inte-
grated/isolated GPUs. Last, network interrupts are triggered
during the website visits. As different website access generates
distinct network interrupts, they can be exploited to fingerprint
websites [5], [7]–[10].

Limitations of State-of-the-art: However, all of the afore-
mentioned interrupt side-channel attacks exploit movable in-
terrupts, which can be dynamically reassigned to different
CPU cores in a multi-core system and mitigated by software-
level isolation. For instance, on x86-based Ubuntu systems,
irqbalance can be enabled to dynamically balance the
workload of interrupt processing across available cores. Be-
sides, a privileged defender can also actively bind the movable
interrupts via interrupt affinity. In such cases, the attacker has
to first identify which core is handling the targeted interrupts.
This can only be done by accessing /proc/interrupts to mon-
itor the interrupt count on the target core or by migrating
their process to that core to observe any induced micro-
architectural changes. However, The dynamic migration of
interrupts between cores will reduce the accuracy of /proc/in-
terrupts sampling. Further, when /proc/interrupts is disabled,
it is non-trivial to consistently migrate the attack process to

2

the interrupt-receiving core to observe interrupts via micro-
architectural changes. This is because process scheduling is
handled by the OS, and the unprivileged attacker lacks control
over interrupt handling and core assignments.

In contrast, non-movable interrupts [14], which are bound
to fixed cores at the hardware level and cannot be reassigned
by the OS, have not been thoroughly investigated. To this end,
we are interested in the following research questions:

Is there any non-movable interrupt that can be exploited for
interrupt side channel attacks? If yes, what attacks can be

mounted and what information can be leaked?

Our Work: In this paper, we conduct a system-level empirical
study on non-movable interrupts in x86 and their potential as
a side-channel. Specifically, we introduce a dynamic analysis
technique that randomly switches between different computing
workloads to investigate how various types of non-movable
interrupts are influenced by these workloads. We then calculate
the Point-Biserial correlation between each workload and
the frequency of individual interrupts. Our results reveal 7
previously unreported exploitable interrupts.

To exploit the identified interrupts, we utilize these inter-
rupts to fingerprint 36 models selected from 9 architecture
families. Our experimental results show that model inference
has an impact on each of the non-movable interrupts. Particu-
larly, for either thermal event interrupts or timer interrupts, our
fingerprinting attack has successfully achieved an accuracy of
no less than 10× of random guess.

Building on the dynamic analysis and fingerprinting results,
we conclude that both thermal event interrupts and timer
interrupts exhibit a strong correlation with CPU activity. Based
on these findings, we build two effective side channels: Ther-
malScope and TimerScope. Both are non-movable interrupts
identified in this paper, and we describe them below.
ThermalScope and TimerScope: ThermalScope leverages
thermal event interrupts as a new side channel to monitor CPU
temperature and ThermalScope alone has been published in
the 61st Design Automation Conference (DAC) 2024 [15].
TimerScope exploits timer interrupts to observe the time
of CPU being idle. Both of them fall within the scope of
unprivileged exploitation of non-movable interrupts on x86-
64 microarchitectures.

The key insight of ThermalScope is that workloads generate
distinct heat signatures, which can be correlated with thermal
event interrupts. When the CPU temperature exceeds a specific
threshold during victim code execution, these interrupts serve
as a side channel, potentially leaking sensitive information
about the victim’s activity. For TimerScope, it exploits another
mechanism used for power optimization. We observe that timer
interrupts are triggered and handled at fixed intervals when the
CPU is active, but stop being triggered when the CPU enters
an idle state to conserve power.

To demonstrate the viability of ThermalScope and Timer-
Scope, we conduct three more case studies. First, we show
that ThermalScope can establish a covert channel with a
transmission rate of 0.1 b/s, while TimerScope-based covert
channel achieves a transmission rate of 10 b/s. Second, we
utilize both ThermalScope and TimerScope to derandomize

kernel address-space layout randomization (KASLR). Our ex-
perimental results demonstrate that ThermalScope successfully
identifies the correct offset in 8.2 hours, whereas TimerScope
achieves this within just 1 minute. Lastly, we demonstrate
successful DNN model fingerprinting attacks under browser
scenarios when the frequency scaling is disabled and the at-
tacker core is isolated from movable interrupts, where previous
HertzBleed [16], ThermalBleed [17], and movable interrupt-
based [8], [10], [14] attacks are ineffective.
Summary of Contributions: The contributions are summa-
rized as follows:
• We conduct a comprehensive system-level empirical study
on exploitable non-movable interrupts, significantly expanding
the attacker’s capabilities by eliminating the need to identify
the specific core handling the target interrupts.
• We propose a dynamic analysis technique to investigate
how various types of non-movable interrupts are influenced by
different workloads. We then conduct a model fingerprinting
attack as the benchmark to show that 7 types of non-movable
interrupts are potentially exploitable.
• ThermalScope exploits the thermal event interrupts and
can be used to infer CPU temperature (published in DAC
2024 [15]). For TimerScope, it exploits the timer interrupts
and is used to infer CPU idle time. Both can bypass the
aforementioned limitations of movable interrupts.

II. BACKGROUND AND RELATED WORK

A. Interrupt Side Channel Attack

Interrupts play a critical role as hardware resources in a
modern operating system (OS), enabling OS process scheduler
to preempt a running process and execute a corresponding
interrupt handler [1]–[4]. As different interrupts are acti-
vated when the system handles different workloads, existing
interrupt side channel attacks have exploited various types
of interrupts, such as keystroke interrupts [11]–[13], graphic
interrupts [6], and network interrupts [7], [14], to break system
confidentiality.

First, when a victim presses the keyboard to input her secret,
keystroke interrupts are activated to invoke the correspond-
ing interrupt handler. Because the context needs to switch
into kernel, the timestamp observed by users will become
discontinuous. An unprivileged attacker can use the timing
side channel to monitor the keystroke interrupts to infer the
victim’s input [8], [10]–[12]. Besides, when the corresponding
interrupt handler code is loaded, the cache state changes. With
this observation, KeyDrown [13] proposes to use cache side
channel to detect the memory accesses to the interrupt handler
code, thereby monitoring keystroke interrupts. To find targeted
cache sets, they need the physical addresses of the keystroke
interrupt handler.

Second, graphic interrupts are activated by a GPU when
there is a need to handle specific tasks related to graphics
processing, indicating significant events such as the comple-
tion of a graphics command or reporting a hardware error.
The timing interval between two consecutive graphic interrupts
varies depending on the specific workloads being processed by
the GPU. Ma et al. [6] exploit graphic interrupts as a separate

3

side channel to leak the activities inside the integrated and
isolated GPUs. They successfully mount several side-channel
attacks under various scenarios, including fingerprinting doc-
uments, distinguishing applications, and recognizing non-GUI
applications.

Last, the activation of network interrupts is related to
network activities. For example, when data packets arrive at
the network interface, network interrupts need to be activated
to handle the reception and processing of the incoming data.
Different websites can trigger different network activities,
including distinctive network interrupts. An attacker can use
these interrupts to fingerprint websites [7], [10], [14], whose
attack typically consists of two phases: an offline preparation
phase and an online classification phase. In the offline phase,
the attacker collects a number of interrupt traces and utilizes
them to train a classifier. In the online phase, while the victim
is opening a website, the attacker employs the pre-trained
classifier to fingerprint which website the victim is visiting.
Movable Interrupts: We summarize that all existing
interrupt-based side-channel attacks rely on movable inter-
rupts, which face two key limitations in practice. First, modern
operating systems (such as x86-based Ubuntu systems) support
interrupt load balancing, which frequently randomizes the
assignment of movable interrupts across cores by enabling
irqbalance [18], making it difficult for attackers to reliably
infer or consistently co-locate on the interrupt-receiving core.
A privileged defender can also bind the targeted movable in-
terrupts on a different core with the attacker core via interrupt
affinity [8], [9], [14]. Second, because both interrupt delivery
and the /proc/interrupts interface are managed at the
OS-level, if the victim and attacker are located in different
virtual machines (VMs) of the same hardware, all previous
attack will not work at all, as both the /proc/interrupts and
co-location of interrupt-receiving core are not feasible, except
in special cases like KVM-based virtualization [8].

Compared to the above works, both ThermalScope and
TimerScope remain effective under the first scenario where
interrupt load balancing or interrupt affinity obfuscates mov-
able interrupt behavior. Furthermore, because thermal event
interrupts are triggered at the hardware level across all cores,
ThermalScope can potentially bypass OS-level isolation, ex-
tending the attack surface to cross-VM settings.

B. Model Fingerprinting Attack
Given the considerable investment in developing DNNs,

they are treated as valuable intellectual property by AI
providers, who often monetize these models through licens-
ing [19], query-based fees [20], or deployment on edge
devices [21], [22]. This business model is threatened by
model extraction attacks, where adversaries aim to steal the
DNN models [23], [24]. Such attacks not only lead to direct
economic losses by circumventing monetization strategies and
enabling unauthorized distribution but also pose security risks.
Stolen models can be used for further malicious activities such
as model inversion attack [25]–[27] that recovers sensitive
training data, or adversarial attack [28], [29] that tricks the
model to produce incorrect outputs, thereby raising significant
privacy, ethical, and legal concerns.

To achieve this attack goal, side-channel attacks have
become a potent means of determining the architecture of
DNN models by exploiting indirect information leaks during
model execution [30]–[33]. These attacks monitor various
side-channel signals that occur during the model inference
phase, including cache usage patterns [34], memory access
sequences [35], [36], power consumption profiles [33], and
electromagnetic emissions [22], [31]. Since DNNs involves
complex matrix multiplication operations inherent in neural
network computations, it results in different types of leakages
in these side channels. By analyzing these signals, an adver-
sary can infer the sequence of computational operations, de-
duce layer types, and extract architectural parameters without
direct access to the model’s internal structure.

One of the prominent techniques is side-channel assisted
model fingerprinting, which utilizes side-channel data to iden-
tify a DNN model by matching it against a pre-established
database of known architectures [37]–[39]. This attack op-
erates under a closed-world assumption, where the victim’s
model is selected from a well-known set of architectures.
The attacker formulates the attack as a classification problem,
training a classifier on side-channel traces gathered from the
known models. During the online phase, the attacker collects
side-channel traces from the victim’s model and uses them to
classify and identify the architecture. Although this method
may face challenges when distinguishing between architec-
tures with similar characteristics, model fingerprinting remains
a significant threat by allowing attackers to accurately classify
and identify models from popular libraries. In practice, victims
often select models from widely used DNN libraries [37],
making this attack highly feasible in real-world scenarios.

C. Non-movable Interrupts
Non-movable interrupts are interrupts that are dedicated to

handle critical system events and cannot be reassigned to
different CPU cores during execution [14], [40], [41]. This
design ensures reliable and timely handling of critical events,
such as hardware timer interrupts and thermal event interrupts,
which require consistent, predictable processing. In contrast
to movable interrupts, which can be managed by one or more
cores through privileged software configurations, non-movable
interrupts have fixed core assignments and cannot benefit from
CPU load balancing.

Figure 1 illustrates a partial snapshot of interrupt statistics
from /proc/interrupts. Movable interrupts are identified
by numeric identifiers, followed by the name of the cor-
responding device responsible for generating the interrupt
(e.g., network cards or storage controllers). In contrast, non-
movable interrupts are labeled with descriptive names (e.g.,
local timer interrupts or thermal event interrupts) and are
triggered by corresponding hardware events specific to a given
core. These events must be handled on the same core where
they originated, as their nature is tied to the core’s function.
To further elucidate the working principle of non-movable
interrupts, we introduce thermal event interrupts and timer
interrupts as two pertinent examples.
Thermal Event Interrupts: In x86 CPUs, thermal throttling
is implemented through a package-level thermal sensor (MSR

4

name Core0 Core1 Core2 . . . Core10 Core11
1 : 92 0 0 . . . 64 0 IR−IO−APIC 1− edge i8042
8 : 0 0 0 . . . 0 0 IR−IO−APIC 8− edge r t c 0
9 : 1784 387 0 . . . 0 0 IR−IO−APIC 9− f a s t e o i a c p i

17 : 7467 10878 0 . . . 50 3342 IR−IO−APIC 17− f a s t e o i idma64 . 1 , i 2 c d e s i g n w a r e . 1
51 : 108226 0 78802 . . . 0 0 IR−IO−APIC 51− f a s t e o i MSFT0001:02

162 : 14 0 0 . . . 0 0 IR−PCI−MSI 56623104 − edge r t s x p c i
163 : 24191 0 9181 . . . 104478 87088 IR−PCI−MSI 57147392 − edge i w l w i f i : d e f a u l t q u e u e
177 : 10 7 0 . . . 0 0 IR−PCI−MSI 57147405 − edge i w l w i f i : e x c e p t i o n
178 : 0 0 2048 . . . 0 0 IR−PCI−MSI 514048 − edge s n d h d a i n t e l : c a r d 0
NMI: 38 2951 320 . . . 104 137 Non− maskable i n t e r r u p t s
LOC: 1494092 4660484 1361822 . . . 1079992 412680 Loca l t i m e r i n t e r r u p t s
SPU: 0 0 0 . . . 0 0 S p u r i o u s i n t e r r u p t s
PMI: 38 2951 320 . . . 104 137 Pe r fo rmance m o n i t o r i n g i n t e r r u p t s
IWI: 51545 15687 17677 . . . 16880 13212 IRQ work i n t e r r u p t s
RTR: 0 0 0 . . . 0 0 APIC ICR r e a d r e t r i e s
RES: 9782 6951 7160 . . . 6412 7260 R e s c h e d u l i n g i n t e r r u p t s
CAL: 204497 107199 95661 . . . 87191 82569 F u n c t i o n c a l l i n t e r r u p t s
TLB: 29054 26963 25718 . . . 22560 18894 TLB shootdowns
TRM: 6320738 6320742 6320741 . . . 6320739 6320741 Thermal e v e n t i n t e r r u p t s

Fig. 1. An example of interrupt statistics provided by /proc/interrupts. The movable interrupts, identified by numerical values, are consistently
associated with the type of external devices (e.g., i8042 or rtc0). On the other hand, the non-movable interrupts, denoted by abbreviations (i.e., NMI, LOC,
etc), are simply described based on their function. Note that some entries have been omitted to save space.

0x19c), which monitors the overall temperature of the CPU
package [40]. When the sensor detects that the package
temperature reaches a pre-determined threshold, thermal event
interrupts are triggered across all CPU cores, initiating context
switches to OS kernel. As a response, the kernel logs the
thermal event and takes actions by adjusting cooling devices
(e.g., increasing the fan speed, reducing the CPU frequency,
etc). To mitigate the risk of hardware failure due to excessive
heat generated by high-intensity workloads in userspace, it
is crucial for the CPU to distribute interrupts across all cores.
Consequently, thermal event interrupts do not support interrupt
affinity, which would otherwise direct specific interrupts to
designated cores.

Timer Interrupts: Timer interrupts are managed by the
Advanced Programmable Interrupt Controller (APIC) on each
CPU core, enabling the operating system to invoke kernel
operations at fixed intervals [40], [42]–[44]. Thus, when there
is a need to reschedule one or two processes on a specific core,
the timer interrupts must be activated and cannot be assigned
to another core. Additionally, to minimize inefficiencies, as
many timer interrupts are unnecessary when no tasks require
attention, the APIC hardware allows users to configure the
interrupt generation policy. By default, timer interrupts are
only triggered when the CPU has active tasks to process.
This configuration reduces unnecessary interrupts during idle
periods, thereby optimizing power consumption.

III. IDENTIFYING EXPLOITABLE NON-MOVABLE
INTERRUPTS

In this section, we first present the threat model and as-
sumptions. Second, we propose a dynamic analysis technique
to investigate how various types of non-movable interrupts are
influenced by different workloads. Last, we conduct a model
fingerprinting attack as the benchmark to show that some non-
movable interrupts are indeed exploitable.

A. Threat Model and Experimental Setup

In our threat model, we assume an unprivileged attacker.
Thus, the attacker cannot make any modifications to a victim
x86-based system. In the native scenario, the attacker can
access local resources (e.g., system interfaces). In the browser
scenario, the attacker is allowed to run their code in a sandbox.

To fingerprint DNN model architectures, we assume that
the victim selects models from PyTorch vision DNN architec-
tures1. To build covert channels, two user processes collude
with each other. To break KASLR, the victim system does
not have any software bugs or vulnerabilities that enable the
attacker to acquire a mapped kernel address.
Machine settings: Our evaluation is conducted under three
different systems as shown in Table II, including different
Intel-based CPUs. Unless otherwise stated, we use the default
system configuration.

TABLE II
SYSTEM CONFIGURATIONS.

Machine CPU Kernel OS

Xiaomi Air 13.3 Intel Core i5-8250U 5.15.0 Ubuntu 20.04.5
Lenovo Savior R9000 Intel Core i7-9750H 5.8.0 Ubuntu 22.04.1

Supermicro X10DRG (Server) Intel Xeon E5-2680 v4 5.15.0 Ubuntu 22.04.1

B. Dynamic Analysis Technique

Here, we propose a dynamic analysis technique to inves-
tigate if there are any interrupts having a strong correlation
with the CPU activities rather than specific external device.
To this end, we rely on stress-ng [45] to create various
activities and then calculate the correlation between each type
of interrupts and each CPU state. Specifically, we alternate
the CPU between high-load and idle states by controlling the
CPU’s operational states at fixed predetermined time intervals.
For the idle states, we utilize the sleep operation across all

1https://github.com/pytorch/vision

5

CPU cores, except for the attack core. In the high-load state,
we employ the following tasks:

• Computation: This setting induces CPU load by per-
forming square root computations on randomly generated
numbers.

• L1-Cache Hit: This setting specifically targets the L1
cache by having all active cores access data that entirely
fits within the L1 cache size (i.e., 32 KB).

• LLC Hit: The setting continuously accesses data that fits
within the Last-level cache (LLC), which is much larger
than the L1 cache, thereby enforcing cache lookups and
accesses at this level. This stress test ensures that the
LLC, shared among multiple cores, is highly utilized.

• Memory Read: This setting emphasizes memory read
operations by allocating 1 GB of memory and directing
each active core to read 64-bit values from it.

• Memory Write: This setting focuses on memory write
operations. Each active core is allocated 1 GB of memory
and continuously writes 64-bit values to it.

• Disk I/O: This setting generates disk I/O stress by
executing synchronous write operations on the hard disk.
Each active core performs I/O operations concurrently,
simulating a high-load disk scenario.

To investigate the variations in different types of interrupts
under varying conditions, we run each setting separately. In
each setting, we randomly choose the running states between
a high-load and idle states every 30 s and record the number
of interrupts generated at both the beginning and the end of
each iteration, thereby establishing a foundation for subsequent
analysis. We repeat the above procedure 1,000 times for
each setting. Following data collection, we concentrate on
evaluating the relationship between interrupt behavior and
changes in running states.

We employ two metrics to analyze the correlation between
different interrupt types and CPU activity, aiming to identify
interrupt categories that may be influenced by CPU operations.
First, we calculate the average increment of each type of
interrupt when different workloads are activated. This serves
as an indicator of observability, as a higher frequency of
interrupts enhances their detectability. Second, we compute
the Point-Biserial Correlation Coefficient [46] for each setting.
This coefficient is well-suited for this analysis as it measures
the relationship between a binary variable, representing the
running state (idle or active), and a continuous variable, the
number of interrupts observed. These correlation coefficients
range from [-1, 1], with absolute values close to 1 indicating a
strong correlation. As we randomly alternate CPU workloads
between idle and a specific active state for each setting,
this coefficient provides a quantitative measure of the extent
of information leakage by determining how well interrupt
patterns can differentiate between the two states. A higher
correlation indicates a stronger association between workloads
and specific interrupt behavior, thereby identifying potential
information leakage risks.
Experimental Results: Table III lists the results of 7 non-
movable interrupts that have correlation with the tested activ-
ities. Note that some types of interrupts are ignored because

their number is always 0 during the experiments. Besides, we
bolded the values with correlations exceeding 0.9 to highlight
strong correlations.

First, our experiments demonstrate that certain types of
non-movable interrupts can be reliably triggered by specific
system activities. For instance, thermal event interrupts are
activated in response to high-load computations, L1 cache
reads, memory reads, and memory writes. However, these
interrupts are not triggered by disk I/O, even when the same
CPU cores are stressed during these operations. Besides,
even interrupts that show only a small number of activations
can still reflect important system activities. For example,
performance monitoring interrupts (PMIs) and non-maskable
interrupts (NMIs), which often occur together, are instrumental
in tracking CPU performance metrics such as instruction
counts, cache misses, and branch prediction failures. Linux
kernel enables nmi_watchdog by default, which tracks the
instruction counts that overflow periodically and trigger PMIs
in non-maskable mode. During each PMI, kernel will check
a high-resolution timer (hrtimer) to avoid hard lockups. Since
these PMIs are configured to be non-maskable and no other
NMIs are generated, we consistently observe the same counts
for NMIs and PMIs across all tested machines.

Observation 1: Some non-movable interrupts are
closely tied to specific system activities and thus po-
tentially exploitable.

Second, we emphasize that the mere presence of a large
number of interrupts does not necessarily indicate exploitabil-
ity. For example, we observed a significant number of TLB
shootdowns and function call interrupts during copy-on-write
operations. However, TLB shootdowns depend on the need to
create new TLB entries, and thus, these interrupts only occur
at the beginning of the test. This illustrates that the timing
and frequency of interrupts must be carefully considered when
assessing their exploitability. Moreover, we found that most
interrupts are bound to individual logical cores, while thermal
event interrupts are synchronized across all cores. Therefore,
understanding the behavior and characteristics of each type of
non-movable interrupt is critical before leveraging them in an
attack.

Observation 2: Different non-movable interrupts ex-
hibit varying levels of observability and responsiveness
to system activities. Their behavior must be carefully
analyzed to assess exploitability.

C. Model Fingerprinting Attack

To evaluate the information leakage of non-movable inter-
rupts, we perform model fingerprinting attack as a significant
benchmark. Our key insight is that a number of matrix oper-
ations used by a DNN model inference result in a distinctive
pattern of system activity and then trigger different non-
movable interrupts. We can use their fingerprinting results to
quantize the leakages.

Aligned with previous work [33], [37]–[39], our model fin-
gerprinting attack has two phases: an offline preparation phase
and an online classification phase. In the offline preparation

6

TABLE III
RESULTS OF OUR DYNAMIC ANALYSIS. WE SHOW THE AVERAGE OF EACH TYPE OF INTERRUPTS UNDER ALL RUNNING STATES AND MARK THE

CORRELATION IN THE BRACKETS.

Type Idle Computation L1-Cache Hit LLC Hit Memory Read Memory Write Disk I/O

Thermal Event Interrupts 0 10338.8 (0.974) 7629.4(0.979) 420.7(0.678) 4639.7(0.876) 3750.7(0.977) 0
Local Timer Interrupts 0 7355.9 (0.979) 7270.3 (0.974) 3602.2 (0.948) 7302.6(0.976) 7303.9(0.951) 3551.3(0.878)

Non-maskable Interrupts 0 3.77 (0.961) 2.5 (0.948) 2.2 (0.949) 4.1 (0.972) 4.1 (0.971) 0.08(0.212)

Rescheduling Interrupts 0.40 8.1(0.850) 143.1 (0.974) 9.8(0.751) 2.4(0.657) 241.3(0.323) 1.25(0.387)

TLB Shootdowns 0.05 0 0.14(0.134) 0.2(0.105) 0 22711.7(0.308) 0.11(0.176)

Function Call Interrupts 0 6.1(0.102) 3.5(0.276) 0.2(0.111) 0.3(0.007) 22219.9(0.308) 651.9(0.862)

Performance Monitoring Interrupts 0 3.77 (0.961) 2.5 (0.948) 2.2 (0.949) 4.1 (0.972) 4.1 (0.971) 0.08(0.212)

phase, we collect the non-movable interrupt traces to build a
series of well-trained classifiers, which can translate a trace to
its corresponding model architecture. In the online classifica-
tion phase, we query a black-box target model running on the
victim machine to trigger its model inference and collect our
side channel traces. Then we use the offline-trained classifiers
to fingerprint the model architectures.

Since the fingerprinting attack is essentially a 36-class
classification task, we choose 4 classic ML models as clas-
sifiers for the attack, aligned with previous fingerprinting
attacks [39], [47], including Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RForest), and k-
Nearest Neighbor (k-NN). We do not deploy deep neural
networks (e.g., BERT) as the classifier by the need for in-
terpretability, computational efficiency, and reduced training
data requirements. For the SVM classifier, we choose a linear
kernel function, and the soft margin constant is set to 10.
For LR classifier, the range of penalty parameter C is 1, 10,
100, 1000. For the RForest classifier, we set the number of
trees as 100 and the maximum depth as 32. For the k-NN
classifier, we set the number of nearest neighbors as 10. For
each classifier, we perform the 10-fold cross-validation during
the evaluation, where nine folds are used as the training data,
and the remaining one fold is retained as the testing data.

Experimental Setup: We carry out our experiments in all
the tested machines. The victim model uses PyTorch 1.13.0
with Python version 3.9.13 as its underlying deep learning
framework. The attacker process and the victim process run
on separate physical cores. Aligned with [37], [39], the victim
models are selected from the PyTorch vision DNN architec-
tures, including 36 architectures over 9 diverse architecture
families. All the pretrained models expect the input images
to be 224 × 224 × 3 and normalized in the same way. We
run inference on the ImageNet ILSVRC Test set images. The
victim runs a DNN model in series for 20 seconds. 2 We pin
the attack process and the victim process to separate cores to
avoid scheduling contention.

We sequentially sample the increment of each type of non-
movable interrupts from /proc/interrupts by default at
a fixed interval of 50 ms and collect 1,000 points for each
attack. For each setting, we record 100 traces for each of the

2Aligned with [39], we run the inferences in series (not in a batch) because
an attacker would not have control over the batch size input to the victim
model.

TABLE IV
THE 36 PYTORCH VISION ARCHITECTURES WHICH WERE USED IN

EVALUATING OUR FINGERPRINTING ATTACK.

Model Family Model Architecture

VGG
VGG11, VGG13, VGG16, VGG19

VGG11 bn, VGG13 bn, VGG16 bn, VGG19 bn

ResNet
ResNet18, ResNet34, ResNet50, ResNet101, ResNet152

Wide ResNet50 2, Wide ResNet101 2, ResNext50 32x4d, ResNext101 32x8d
SqueezeNet SqueezeNet1 0, SqueezeNet1 1
DenseNet DenseNet121, DenseNet161, DenseNet 169, DenseNet201

ShuffleNet
ShuffleNet v2 x0 5, ShuffleNet v2 x1 0
ShuffleNet v2 x1 5, ShuffleNet v2 x2 0

MnasNet MnasNet0 5, MnasNet0 75, MnasNet1 0, MnasNet1 3
MobileNet MobileNet v2, MobileNet v3 large, MobileNet v3 small
AlexNet AlexNet

GoogleNet GoogleNet

Fig. 2. The fingerprinting accuracy of the fingerprintng results under different
settings. The red dashed line denotes a baseline of random guess (i.e., 2.7%).

36 model architectures. We feed the collected side channel
traces without any preprocessing into the classifiers.

Experimental Results: Figure 2 shows the fingerprinting
results of 7 different non-movable interrupts, with the best
classifier for each interface highlighted. Among the 7 identified
interfaces, only thermal event interrupts and timer interrupts
can achieve an accuracy of no less than 10 × of random guess
(i.e., 27%), indicating a strong correlation between sampled
interrupt counts and model inference activities. Besides, the
results of thermal event interrupts achieve a high accuracy of
over even 90%. This is reasonable because DNN model infer-
ences would create heat, thereby activating distinctive thermal
event interrupts. We further investigate their exploitation in
Section IV.

7

Core 1

Padding Code

Heat

Victim Code

 Num of TRM

Core 2 Core 3 Core i Core n... ...

TimeTime

Thermal Sensors

Victim Attacker

Fig. 3. An illustration of using ThermalScope-Monitor to exploit thermal
event interrupts (TRM). As thermal event interrupts are consistently activated
on all cores, the attacker can obtain temperature information without relying
on direct access to the thermal sensor on an arbitrary core.

IV. THERMALSCOPE AND TIMERSCOPE

In this section, we propose two instances that respectively
exploit thermal event interrupts and timer interrupts as a
standalone side channel, followed by their characterization.

A. ThermalScope

As introduced in Section II-C, the thermal event interrupts
are triggered only when CPU temperature exceeds a pre-
determined threshold. We aim to fully exploit the potential of
thermal event interrupts to build ThermalScope. Based on the
attacker’s core configuration, ThermalScope consists of two
variants for observing temperature changes. The first variant,
ThermalScope-Monitor, monitors temperature changes on a
victim core different from the attacker’s core. The second vari-
ant, ThermalScope-Probe, observes temperature fluctuations
on the same core as the attacker, where a number of sen-
sitive instructions have been executed to induce temperature
variations correlated with the secret data.
ThermalScope-Monitor: On a multi-core system, the CPU
package temperature is determined jointly by the workloads of
all cores. To amplify the temperature increments, the attacker
can execute another compute-intensive code (called padding
code) concurrently with the victim code. The padding code
loops to execute the same instructions to generate constant
heat, which is used to lift the package temperature to exceed
the threshold to activate thermal event interrupts. Because the
heat caused by the padding code is stable, the variation of
thermal event interrupts can be attributed to the victim code.
In this way, an attacker can infer victim activity by observing
the induced thermal event interrupts.

As shown in Figure 3, to construct ThermalScope-Monitor,
the attacker needs to run her padding code on a different core
with the one occupied by the victim. By selecting an ap-
propriate padding code, the package temperature is amplified
near the threshold, causing distinctive thermal event interrupts
during the execution of the victim program. They can infer the
activity of the victim code via the activation of thermal event
interrupts.
ThermalScope-Probe: Since the temperature increments
caused by the computing task can be observed even after it

Time

Temperature

Attacker-controlled Code Attack Code
Is the remnant heat
high or low?

Threshold

M

Fig. 4. An illustration of using ThermalScope-Probe to exploit thermal event
interrupts. Two pieces of code are executed sequentially on the same core.
The second piece intentionally generates heat until a thermal event interrupt
is triggered, whose execution time is used to observe temperature.

is stopped, these increments can expose secret information
to the following processes, especially when they share the
same physical core [48]. This remnant heat allows the process
to infer sensitive information from its predecessor, thereby
violating time division. Unlikely other types of shared system
resources that can be reset before context switching (e.g., CPU
registers), as the decrease in temperature requires a significant
amount of time, the remnant heat is hard to eliminate.

In this section, we leverage the remnant heat to construct
ThermalScope-Probe, a new variant of ThermalScope that ob-
tains temperature observations by triggering featured thermal
event interrupts. To achieve this, the attacker is required to
execute their code on the same CPU core as the victim’s
code. As shown in Figure 4, two pieces of code are executed
sequentially. One piece is attacker-controlled code (e.g., a code
snippet that accesses a kernel address in breaking KASLR)
that executes a computational task related to user’s secret.
According to the instructions and data executed, the attacker-
controlled code will cause different heat (i.e., the red dot
is higher than the blue dot). The other piece contains Ther-
malScope. After the execution of the attacker-controlled code,
ThermalScope-based code loops to execute a specific operation
until a thermal event interrupt is detected. Even if there is
heat loss caused by the cooling device, the heat generated
by the attacker code should be negatively correlated with the
remnant heat. Considering that the heat generated by the attack
code depends on the number of executed instructions, when
starting from a higher temperature (the red dot), the attack
code requires fewer instructions to execute. We use the number
of executed instructions to guide our attack.

Observing Thermal Event Interrupts: In the native
scenario, the /proc/interrupts interface provides
statistics of various types of interrupts, which are available
to unprivileged processes in Linux. Previous works have
exploited the interface to observe targeted device interrupts,
such as GPU [6]. Similar to them, we can also leverage
this interface to retrieve the thermal event interrupts. To
mitigate existing interrupt side channels, the interface can be
disabled for unprivileged users. To bypass the mitigation, the
/sys/devices/system/cpu/cpuX/thermal_throttle

interface has been identified to provide information about our
targeted thermal event interrupts. Specifically, this interface
allows us to obtain the number of thermal events, whose

8

logging depends on whether there is a thermal event interrupt
occurring within a certain time interval.

In the browser scenario, the two interfaces above become in-
accessible. However, we observe that thermal event interrupts
are always triggered on all cores, resulting in a reduction in
user-mode time. To this end, we use a loop-counting program
to observe interrupts that have occurred, including thermal
event interrupts. Specifically, the program loops to increase a
counter value and sample its increment at fixed time intervals
set by a timer. If the running core receives any interrupt (e.g.,
thermal event interrupts), context switch occurs, slowing down
the counter’s increment and thus signaling the occurrence of
an interrupt. As high-resolution timers are crippled in browser
scenario, the loop-counting program uses a low-resolution
timer with a granularity of millisecond (e.g., 1 ms for Chrome
and Firefox) to monitor these interrupts.

B. TimerScope

On x86 architectures, timer interrupts are generated by
the Advanced Programmable Interrupt Controller (APIC) at
fixed intervals. By configuring the APIC, privileged software
(e.g., the OS kernel) can precisely control the generation
of these interrupts. Previous work has primarily focused on
privileged exploitation, where attackers inject timer interrupts
to periodically pause the execution of victim enclave programs,
subsequently using various side channels to compromise their
confidentiality. To date, the only unprivileged exploitation
is SegScope [5], which leverages timer interrupts as clock
edges to build a fine-grained timer. In this work, we aim to
demonstrate that timer interrupts themselves can be exploited
as a side channel to leak information about CPU activities.
Same as ThermalScope, TimerScope also contains two variants
to enable a cross-core/same-core attacker, namely TimerScope-
Monitor and TimerScope-Probe.

The main idea behind TimerScope is that the APIC
hardware in x86 CPUs stops generating timer interrupts to save
energy when the core becomes idle and no context switch is
needed [40], [41]. By default, Linux-based systems support the
tickless mode, which allows the operating system to suppress
periodic timer interrupts once the target core enters C-state
1 or deeper C-states. In contrast, when the core remains active,
timer interrupts continue at a fixed rate, providing a stable and
accessible timing source for unprivileged processes.
TimerScope-Monitor: Our first primitive is to exploit timer
interrupts to infer whether victim core is idle or not, which
relies on the /proc/interrupts interface to obtain interrupt
statistics of that core. As shown in Figure 5, the attacker
runs their code on a different core while monitoring the
timer interrupts of the victim core. Timer interrupts are only
triggered when the victim core is active. If the victim program
requests specific resources (e.g., webpage rendering) and then
relinquishes the CPU for a certain period, timer interrupts will
pause. By monitoring these interrupts, the attacker can infer
the victim’s activities.
TimerScope-Probe: The second variant of TimerScope fo-
cuses on the fixed time interval between two consecutive
interrupts. Our goal is to use the number of triggered timer

Fig. 5. An illustration of using TimerScope-Monitor to exploit timer interrupts
to infer victim activities.

Fig. 6. An illustration of using TimerScope-Probe to exploit timer interrupts
to time the execution of victim code. The number of generated timer interrupts
can be used as an alternative timing source to monitor the elapsed time.

interrupts as a timing primitive to measure the duration of a
specific function. As shown in Figure 6, TimerScope-Probe
operates with a piece of attacker-controlled code (e.g., a
snippet that accesses a kernel address to break KASLR) that
needs to be timed. The attacker queries the number of timer
interrupts before and after the execution of the code. By
calculating the difference in the number of interrupts, the
attacker can derive an estimated execution time, with the
granularity of this measurement determined by the interval
between consecutive clock interrupts, which is typically in the
level of milliseconds.
Observing Timer Interrupts: As mentioned above, Timer-
Scope relies on /proc/interrupts to collect statistics of
either cross-core or same-core interrupts. We note that a recent
work has proposed a new technique for monitoring cross-
core interrupts via microarchitectural changes [9]. However,
this approach depends on IPI virtualization features available
only on Intel Sapphire Rapids and Arrow Lake processors,
which were commercially released in 2023 and November
2024, respectively. These platforms are not included in our
experimental setup. Our objective is to demonstrate the feasi-
bility of exploiting timer interrupts as a leakage source, and
we leave the application of state-of-the-art microarchitectural
techniques for observing timer interrupts to future work.

C. Characterizing ThermalScope and TimerScope

Characterizing ThermalScope: To show the effectiveness of
ThermalScope in measuring temperature changes, we compare
ThermalScope results with the temperature variation reported
by the hwmon interface. hwmon is a mechanism for measuring
and controlling the temperature of individual components of
Linux-based machines. It provides a real-time measurement of

9

Fig. 7. The relationship between the number of thermal event interrupts
(TRM), the number of package thermal events, and temperature (through
hwmon). Thermal event interrupts are activated only when the CPU package
temperature exceeds a specific threshold, and the thermal events are logged.

Fig. 8. An approximate linear relationship between the heating time and
starting temperature (through hwmon).

the temperature for each CPU core, based on high resolution
sampling of the integrated thermal sensors inside the CPU.

In this experiment, /proc/interrupts is used to obtain
the interrupt statstics and thermal_throttle is used to
obtain the number of thermal events. Aligned with previous
work [6], we choose a sampling period of 50 ms. To cause
temperature increments, we use a certain number of sqrt
operations to calculate the square root of a non-negative
random number. We separately evaluate the two variants of
ThermalScope on the Lenovo machine.

First, we mount ThermalScope-Monitor that executes sqrt
operations for 10 seconds and sleeps for 10 seconds in
turns. At the same time, we use another process running on
a separate core to record the temperature via hwmon, the
number of thermal event interrupts, and the number of thermal
events every 50 ms. In this way, we can directly observe the
relationship between the activation of thermal event interrupts
and CPU package temperature.

Second, we apply ThermalScope-Probe to observe the rela-
tionship between the number of needed instructions and CPU
starting temperatures. To achieve this, we have two pieces
of code to execute. The first piece of code (i.e., attacker-
controlled code) performs a random number of sqrt operations
to cause different starting temperatures. Then, the second piece
of code starts loops to execute sqrt operations and records the
number of executed operations. At the same time, its child
thread running on another core is used to monitor the activation
of thermal event interrupts and notify the heating process to
break their loops if a new interrupt is observed. We run the

Fig. 9. The relationship between the number of timer interrupts and power
consumption (through RAPL). Only when the CPU is active, the timer
interrupts are activated and the power consumption are increased.

Fig. 10. An approximate linear relationship between the number of timer
interrupts and execution time (through rdtsc).

above steps for 1000 times.
Experimental Results: As shown in Figure 7, only when
the temperature reaches a threshold (e.g., 80 ◦C in our Xiaomi
machine and 90 ◦C in our Lenovo machine), the thermal event
interrupts are activated and the thermal events are logged.
Besides, the number of thermal events is less than thermal
event interrupts, because the logging frequency of thermal
events is limited by kernel. If there are two thermal events
in a logging cycle, the kernel will only log them once.
Figure 8 shows the relationship between heating time and
starting temperature. These two values approximately satisfy
a linear relationship. The lower the starting temperature is, the
more sqrt operations are executed. So the attacker can use the
number of executed operations to infer the starting temperature
that depends on the system activity.
Characterizing TimerScope: We then characterize Ther-
malScope by using the activation of timer interrupts to infer
victim activity and measure the execution time of the victim
code. Our aim is to confirm that TimerScope can be used to de-
termine whether the victim core is active or idle. Aligned with
HammerScope [49], we test TimerScope under two extremes.
To support this comparison, we leverage RAPL [50], [51]
to capture the energy consumption of whole CPU package,
and rdtsc to obtain precise CPU cycle counts which are
then translated into real time. Since all other cores remain
idle during this experiment, variations in the measured RAPL
values primarily reflect the power consumption of the victim

10

core.
First, we run a piece of victim code that executes sqrt

operations for 1 second and sleeps for 1 second in turns. At
the same time, we use another process running on another
separate core to record the increment of energy consumption
and the number of timer interrupts every 50 ms. In this
way, we can directly observe the relationship between the
activation of timer interrupts and CPU activities. To highlight
the strong correlation between the timer interrupts and power
consumption, we compute the Pearson correlation coefficient
(ρ) and regression coefficients (p). Pearson correlation co-
efficient is used to assess the strength and direction of the
linear association, while the regression coefficient measures
the impact of these two values in a linear regression model.
We note that we use privileged execution to apply RAPL to
obtain power consumption.

Second, we apply Timer-Probe to examine the relationship
between the number of timer interrupts and the execution time
of the victim code. To do this, we run attacker-controlled code
that performs a random number of sqrt operations, generating
varying execution times. We query both timer interrupts before
and after each execution of the victim code. This procedure is
repeated 1000 times to ensure statistical significance.
Experimental Results: As shown in Figure 9, both RAPL
and the TimerScope measurements can accurately capture the
CPU activity. The RAPL and TimerScope measurements are
highly correlated (ρ = 0.984, p < 0.001). Figure 10 shows the
relationship between execution time and increment of timer
interrupts. These two values approximately satisfy a linear
relationship. The more the execution time is, the more timer
interrupts are triggered. So the attacker can use the number of
timer interrupts to time the victim code.

V. CASE STUDIES

A. Building Covert Channels

A covert channel [16], [48], [49], [52], [53] requires a
pair of colluding sender and receiver, which are usually not
allowed to communicate over normal channels. We assume
that a sender actively executes sqrt operations on random
numbers to stress its CPU cores. Depending on the sender’s
intention to send bit ‘0’ or bit ‘1’, the child threads execute
for different time. Meanwhile, the receiver operates on a
separate core and utilizes either ThermalScope-Monitor or
TimerScope-Monitor to intercept the covertly transmitted bits.
To evaluate the efficacy of ThermalScope-Monitor, the receiver
leverages the thermal_throttle interface to capture ther-
mal event interrupts. For TimerScope-Monitor, the receiver
monitors timer interrupts from the sender’s core through
/proc/interrupts.
Experimental Setup: For each test, we transmit 1 kB of
random data between two unprivileged processes running on
different cores of the Lenovo machine. The sender controls the
execution number of sqrt operations to control the activation
of non-movable interrupts. For the ThermalScope-based covert
channel, a ‘1’ is transmitted by executing sqrt operations for
5 seconds, followed by a 5-second sleep period. Conversely,
a ‘0 is transmitted by sleeping for 10 seconds. Additionally,

to ensure the activation of thermal event interrupts when
transmitting a ‘1’, the sender spawns a separate process on
another core that continually increments a counter. For the
TimerScope-based covert channel, a ‘1’ is transmitted by
executing sqrt operations for 100 milliseconds, while a ‘0’
is transmitted by sleeping for 100 milliseconds. The receiver
captures the increments of thermal event interrupts or timer
interrupts at consistent intervals via /proc/interrupts or
thermal_throttle, and by comparing these increments
against a predefined threshold, it determines the transmitted
bits as either ‘0’ or ‘1’.
Experimental Results: For the ThermalScope-based covert
channel, our proof-of-concept (PoC) implementation achieves
a transmission rate of 0.1 bit/s with a bit error rate of 0.2%
when using the /proc/interrupts interface and 0.7%
when using the thermal_throttle interface (averaged
across 10 trials) on our Lenovo machine. On the same
platform, the TimerScope-based covert channel achieves a
transmission rate of 10 bit/s with a bit error rate of 0%. While
the transmission rate of our covert channel is lower in contrast
to other state-of-the-art covert channels [54], [55], our covert
channel has the benefit that it does not rely on high-resolution
timers and exploits a different mechanism (i.e., non-movable
interrupts). And we believe that this case study can serve as
a significant benchmark for our side channel’s bandwidth.

B. Breaking KASLR

In Linux, KASLR is implemented to randomize the base
address of the text segment at every boot time, aligning it with
a 2 MB boundary and mapping it to an address within a range
of 1 GB [17], [56]–[59]. If an attacker wants to determine
the text base address, a maximum of 512 times of guessing
is needed. However, prior work [5], [17], [56] has shown
that a side channel leakage occurs when executing prefetch
instructions on a memory address, depending on whether
that address is mapped or not. Our key idea of breaking
KASLR is that the activation of non-movable interrupts also
depends on the execution of prefetch instructions. We can
use ThermalScope-Probe or TimerScope-Probe to distinguish
the prefetch instructions to mapped address from the prefetch
instructions to unmapped address.
Experimental Setup: For the ThermalScope-Probe, the
attacker-controlled code executes 3 billion prefetch instruc-
tions at each address. Following this, the attack code, which
time-shares the same physical core as the attacker-controlled
code, repeatedly performs sqrt calculations on random num-
bers until a thermal event interrupt is triggered. The attacker
distinguishes whether an address is mapped or not based
on the number of executed sqrt operations. To allow for
adequate cooling, a 30-second pause is introduced before each
attempt. For the TimerScope-Probe, the attacker-controlled
code executes 10 million prefetch instructions at each address,
while the number of timer interrupts during this period is
recorded. If an address in the ThermalScope-Probe requires
significantly fewer operations to trigger the thermal event
interrupt compared to others, we conclude that the address
is mapped. Similarly, if the number of timer interrupts in the

11

Fig. 11. Number of executed sqrt operations when we apply ThermalScope-
Probe on every possible base address. The X-axis represents the candidate
address for the kernel text segment.

Fig. 12. Number of timer interrupts when we apply TimerScope-Probe on
every possible base address.

TimerScope-Probe is notably smaller for a particular address,
we also infer that it is the mapped address.
Experimental Results: Figure 11 presents the results of
applying ThermalScope-Probe to break KASLR, which is
conducted on the Lenovo machine. The entire attack process
takes 8.2 hours. When prefetching a mapped memory, the
execution of prefetch instruction is faster and thus the starting
temperature in ThermalScope-Probe is higher than others.
As a result, fewer sqrt operations are needed to make the
package temperature reach the fixed threshold. Obviously,
the slot 64 corresponds to the mapped address. Figure 12
presents the results of applying TimerScope-Probe to break
KASLR. When prefetching a mapped memory, the execution
of prefetch instruction is faster and thus the increments of
timer interrupts are lower than others. As TimerScope-Probe
achieves a granularity of millisecond (see Section IV-C), the
entire attack process only takes 51.6 seconds on our Xiaomi
machine.

C. Browser-based DNN Model Fingerprinting Attack

Here, we demonstrate a practical cross-core attack using the
techniques discussed in Section IV.A, which does not rely on
/proc/interrupts and thus can work under the browser
scenario [12], [60]–[65]. To achieve this, we leverage heat
padding to trigger thermal event interrupts and use a loop-
counting program to continuously increment a counter value.
We aim to show that thermal event interrupts can serve as
a reliable cross-core leakage source for browser-based DNN

TABLE V
THE IMPACT OF THE SAMPLING OF INTERRUPTS (RFOREST IS USED AS

THE CLASSIFIER).

Setting Xiaomi Lenovo Average

Loop-counting (Native) 0.933 0.923 0.938
Loop-counting (JavaScript) 0.589 0.459 0.524
Thermal Event Interrupts 0.964 0.982 0.973

Overvall Interrupts 0.927 0.941 0.934
Other Interrupts 0.418 0.407 0.418

model fingerprinting attack. In our experiments, we sample
this counter at a fixed interval of 10 ms, collecting 5,000
points for each attack. Since the loop-counting code measures
instruction throughput, which can be affected by processor
frequency scaling, we fix the CPU frequency using the Linux
cpufreq-set command. Besides, we apply isolcpus
to prevent network and other movable interrupts from being
handled on the sampling cores. We implement the loop-
counting functionality using native C code and JavaScript code
within Firefox v135.0 on the Xiaomi machine and Firefox
v125.0 on the Lenovo machine. For the heat padding code, we
use one or more tabs to perform computations using JavaScript
code.
Ablation Study: We also test our method in other settings
including observing thermal event interrupts, overall interrupts,
and the other interrupts under the native scenario, where
we sample the increment of thermal event interrupts from
/proc/interrupts by default at a fixed interval of 50 ms
and collect 1,000 points for each attack. For the other settings,
We separately use /proc/interrupts to obtain the sum
of the overall interrupts on the attack core and the sum of
interrupts other than thermal event interrupts and at a fixed
interval of 50 ms.

As our research focus is not on the deep learning algo-
rithm, we feed the collected side channel traces without any
preprocessing into the RForest classifier presented in Section
III.C. For each experiment, we record 100 traces for each
of the 36 model architectures shown in Table IV. For each
classifier, we perform the 10-fold cross-validation during the
evaluation, where nine folds are used as the training data, and
the remaining one fold is retained as the testing data.
Experimental Results: Table V reports the classification
accuracy of our RForest model under different settings. Our
loop-counting attack remains effective even when the attacker
core is isolated. When executed within the browser using
JavaScript where there is more system noise, the fingerprinting
accuracy inevitably decreases compared to native execution;
however, the achieved accuracy of 52.4% still significantly
exceeds random guessing, which yields only 2.8% across 36
architectures. Besides, without thermal event interrupts, using
the sum of other interrupts can only achieve a low success rate
of 41.8%. Last, the average success rate of overall interrupts
and thermal event interrupts setting is 93.4% and 97.3%,
respectively, which validates how thermal event interrupts
contribute to our browser-based attack. The reason for the
slightly higher success rate of our native loop-counting attack
is that the loop-counting program essentially observes the

12

handling time of overall interrupts, rather than the number,
thus capturing more information.

VI. DISCUSSION

A. Future Work

Besides ThermalScope and TimerScope, there might also
exist other unprivileged exploitation of non-movable interrupts
except model stealing attack. As discussed in Section III,
we identified 5 additional non-movable interrupts that have
not yet been fully investigated in this paper. For instance,
TLB shootdowns could potentially be exploited to probe
whether new TLB entries are created on the same or different
cores. Similarly, with performance monitoring interrupts, an
unprivileged attacker could deliberately manipulate one of
the performance monitoring counters to approach its overflow
threshold. By then triggering or waiting for the victim’s code
to execute and observing whether a performance monitoring
interrupt is activated, the attacker could infer whether a specific
performance event (e.g., cache miss and branch prediction
failure) occurred. Further evaluation of these instances with
real-world case studies is left for future work.

B. Mitigation Strategies

Eliminating the Information Leakage: Since non-movable
interrupts cannot easily be isolated to a dedicated core that is
inaccessible to attackers, mitigating the associated information
leakage requires tailored defenses for each type of non-
movable interrupt. For thermal event interrupts, one potential
mitigation strategy is to improve the system’s cooling devices
to minimize the occurrence of thermal event interrupts, thereby
reducing the granularity of information that can be leaked
through temperature fluctuations. For instance, two of our
tested machines are laptops, which exhibit poorer cooling
performance compared to typical desktop or server systems. In
contrast, our desktop machine, which is equipped with a ded-
icated cooling system, experiences significantly fewer thermal
events than them. This observation underscores that stronger
cooling mechanisms can effectively mitigate ThermalScope-
style attacks and highlights the importance of addressing
information leakage risks, particularly in mobile devices.

In the case of timer interrupts, defenders could recompile
the kernel to enable tickless-full mode, which elim-
inates periodic timer interrupts on cores running a single
process. This approach, coupled with assigning the victim
process to a dedicated core, can significantly reduce the
exposure to timer-based side-channel attacks by limiting the
availability of exploitable interrupts on the core where the
attacker resides.
Restricting Unprivileged Observations: Our high-resolution
observation method leverages interrupt counts available
through system files such as /proc/interrupts (and
thermal_throttle specifically for thermal event interrupts),
which are accessible to unprivileged users. By monitoring
these counts, attackers can directly acquire the number of
targeted non-movable interrupts, thereby creating a side chan-
nel for data leakage without requiring elevated privileges.

To mitigate this risk, we recommend restricting unprivileged
access to these files by modifying file permissions or enforcing
stricter access controls. However, this approach only partially
addresses the issue, as it does not prevent timing-based [9],
[12] or microarchitectural observations [5], [7], [8], which
extract interrupt information through execution timing or mi-
croarchitectural state changes.
Injecting Artificial Noise to Interrupts: For users, we
also discuss some possible mitigation to prevent the side
channel leakage of non-movable interrupts. Specifically, to
mitigate TimerScope, the defender can co-locate a process
with the attacker process. This process takes up a random
amount of time on the CPU each time. By time-sharing the
CPU, this will introduce random noise to the core that the
attacker is monitoring. Similarly, to mitigate ThermalScope,
a random computation process can also be used to generate
noise to thermal event interrupts. While this strategy cannot
entirely eliminate a side channel, it effectively reduces its
signal strength [8], [9].

VII. CONCLUSION

In this paper, we conducted an empirical study on ex-
ploitable non-movable interrupts and their contribution to
interrupt-based side-channel leakages in x86-based system.
We proposed a dynamic analysis technique to examine how
different types of non-movable interrupts are affected by
various workloads. Using a model fingerprinting attack as a
benchmark, we demonstrated that seven types of non-movable
interrupts are exploitable. Building on these findings, we intro-
duced two practical side channels, ThermalScope and Timer-
Scope, which can infer victim activities when the attacker
and victim share the same core or reside on separate cores.
Last, we applied them to real-world case studies, successfully
constructing cross-core covert channels and breaking kernel
address space layout randomization (KASLR). Our work aims
to emphasize the need to tackle information leakage at its
source by conducting a comprehensive analysis of the risks
posed by non-movable interrupts.

REFERENCES

[1] Y. Wang, F. Gao, L. Wang, T. Yu, J. Zhao, and X. Li, “Automatic
detection, validation, and repair of race conditions in interrupt-driven
embedded software,” IEEE Transactions on Software Engineering,
vol. 48, no. 1, pp. 346–363, 2022.

[2] C. Ye, Y. Cai, and C. Zhang, “When threads meet interrupts: Effective
static detection of Interrupt-Based deadlocks in linux,” in USENIX
Security Symposium, 2024, pp. 6167–6184.

[3] Y. Lee, C. Min, and B. Lee, “ExpRace: Exploiting kernel races through
raising interrupts,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2363–2380.

[4] A. Tai, I. Smolyar, M. Wei, and D. Tsafrir, “Optimizing storage
performance with calibrated interrupts,” ACM Transactions on Storage,
vol. 18, no. 1, 2022.

[5] X. Zhang, Z. Zhang, Q. Shen, W. Wang, Y. Gao, Z. Yang, and J. Zhang,
“Segscope: Probing fine-grained interrupts via architectural footprints,”
in High Performance Computer Architecture, 2024.

[6] H. Ma, J. Tian, D. Gao, and C. Jia, “On the effectiveness of using
graphics interrupt as a side channel for user behavior snooping,” IEEE
Transactions on Dependable and Secure Computing, pp. 3257–3270,
2021.

[7] R. Zhang, T. Kim, D. Weber, and M. Schwarz, “(M)WAIT for It:
Bridging the Gap between Microarchitectural and Architectural Side
Channels,” in USENIX Security Symposium, 2023.

13

[8] F. Rauscher, A. Kogler, J. Juffinger, and D. Gruss, “Idleleak: Exploiting
idle state side effects for information leakage,” in Network and Dis-
tributed System Security Symposium, 2024.

[9] F. Rauscher and D. Gruss, “Cross-core interrupt detection: Exploiting
user and virtualized ipis,” in ACM SIGSAC Conference on Computer
and Communications Security, 2024.

[10] D. Weber, F. Thomas, L. Gerlach, R. Zhang, and M. Schwarz, “Indirect
meltdown: Building novel side-channel attacks from transient-execution
attacks,” in ESORICS, 2023, pp. 22–42.

[11] J. Trostle, “Timing attacks against trusted path,” in IEEE Symposium on
Security and Privacy, 1998, pp. 125–134.

[12] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Mangard,
“Practical keystroke timing attacks in sandboxed javascript,” in European
Symposium on Research in Computer Security, 2017, pp. 191–209.

[13] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer,
and S. Mangard, “Keydrown: Eliminating software-based keystroke
timing side-channel attacks,” in Network and Distributed System Security
Symposium, 2018.

[14] J. Cook, J. Drean, J. Behrens, and M. Yan, “There’s always a bigger
fish: A clarifying analysis of a machine-learning-assisted side-channel
attack,” in International Symposium on Computer Architecture, 2022, p.
204–217.

[15] X. Zhang, Z. Zhang, Q. Shen, W. Wang, Y. Gao, Z. Yang, and Z. Wu,
“Thermalscope: A practical interrupt side channel attack based on
thermal event interrupts,” in Design Automation Conference, 2024.

[16] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power Side-Channel attacks into
remote timing attacks on x86,” in USENIX Security Symposium, 2022,
pp. 679–697.

[17] T. Kim and Y. Shin, “Thermalbleed: A practical thermal side-channel
attack,” IEEE Access, vol. 10, pp. 25 718–25 731, 2022.

[18] L. community, “Irqbalance,” https://github.com/Irqbalance/irqbalance,
2015.

[19] Y. Li, Z. Zhang, B. Liu, Z. Yang, and Y. Liu, “Modeldiff: testing-based
dnn similarity comparison for model reuse detection,” in Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021, p. 139–151.

[20] E. Debenedetti, G. Severi, N. Carlini, C. A. Choquette-Choo, M. Jagiel-
ski, M. Nasr, E. Wallace, and F. Tramèr, “Privacy side channels in
machine learning systems,” in USENIX Security Symposium, 2024, pp.
6861–6848.

[21] C. Gongye, Y. Luo, X. Xu, and Y. Fei, “Side-channel-assisted reverse-
engineering of encrypted dnn hardware accelerator ip and attack surface
exploration,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2023, pp. 1–1.

[22] H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin, “Deepem: Deep neural
networks model recovery through em side-channel information leakage,”
in Hardware Oriented Security and Trust, 2020.

[23] W. Jiang, H. Li, G. Xu, T. Zhang, and R. Lu, “A comprehensive defense
framework against model extraction attacks,” IEEE Transactions on
Dependable and Secure Computing, pp. 685–700, 2024.

[24] L. Gao, W. Liu, K. Liu, and J. Wu, “Augsteal: Advancing model
steal with data augmentation in active learning frameworks,” IEEE
Transactions on Information Forensics and Security, pp. 4728–4740,
2024.

[25] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in ACM
SIGSAC Conference on Computer and Communications Security, 2015,
p. 1322–1333.

[26] M. Khosravy, K. Nakamura, Y. Hirose, N. Nitta, and N. Babaguchi,
“Model inversion attack by integration of deep generative models:
Privacy-sensitive face generation from a face recognition system,” IEEE
Transactions on Information Forensics and Security, pp. 357–372, 2022.

[27] T. Zhu, D. Ye, S. Zhou, B. Liu, and W. Zhou, “Label-only model
inversion attacks: Attack with the least information,” IEEE Transactions
on Information Forensics and Security, vol. 18, pp. 991–1005, 2023.

[28] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Asia Conference on Computer and Communications Security, 2017, p.
506–519.

[29] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Characterizing
and evaluating adversarial examples for offline handwritten signature
verification,” IEEE Transactions on Information Forensics and Security,
pp. 2153–2166, 2019.

[30] J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. Faruque, “Leaky DNN:
Stealing deep-learning model secret with gpu context-switching side-

channel,” in Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2020, pp. 125–137.

[31] H. T. Maia, C. Xiao, D. Li, E. Grinspun, and C. Zheng, “Can one hear
the shape of a neural network?: Snooping the gpu via magnetic side
channel,” in USENIX Security Symposium, 2022.

[32] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. Al Faruque, “Stealing
neural network structure through remote fpga side-channel analysis,”
IEEE Transactions on Information Forensics and Security, pp. 4377–
4388, 2021.

[33] Y. Gao, H. Qiu, Z. Zhang, B. Wang, H. Ma, A. Abuadbba, M. Xue,
A. Fu, and S. Nepal, “Deeptheft: Stealing dnn model architectures
through power side channel,” in IEEE Symposium on Security and
Privacy, 2024.

[34] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “Deepsteal:
Advanced model extractions leveraging efficient weight stealing in
memories,” in IEEE Symposium on Security and Privacy, 2022, pp.
1157–1174.

[35] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood, and Y. Xie, “Deepsniffer: A dnn model extraction frame-
work based on learning architectural hints,” in Architectural Support for
Programming Languages and Operating Systems, 2020, p. 385–399.

[36] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes attack: Steal dnn models
with lossless inference accuracy,” in USENIX Security Symposium, 2021.

[37] K. Patwari, S. M. Hafiz, H. Wang, H. Homayoun, Z. Shafiq, and C.-N.
Chuah, “Dnn model architecture fingerprinting attack on cpu-gpu edge
devices,” in European Symposium on Security and Privacy (EuroS&P),
2022, pp. 337–355.

[38] C. Liu, D. Wang, Y. Lyu, P. Qiu, Y. Jin, Z. Lu, Y. Zhang, and G. Qu,
“Uncovering and exploiting amd speculative memory access predictors
for fun and profit,” in High Performance Computer Architecture, 2024,
pp. 31–45.

[39] J. O. Weiss, T. Alves, and S. Kundu, “Ezclone: Improving dnn model
extraction attack via shape distillation from gpu execution profiles,”
arXiv preprint, 2023.

[40] Intel, Inc., “Intel 64 and IA-32 architectures software developer’s manual
combined volumes: 1, 2a, 2b, 2c, 3a, 3b and 3c,” 2019.

[41] AMD, Inc., “Amd64 architecture programmers manual volume 2: Sys-
tem programming,” 2019.

[42] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying microar-
chitectural timing leaks in rudimentary cpu interrupt logic,” in ACM
SIGSAC Conference on Computer and Communications Security, 2018,
p. 178–195.

[43] J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai, “Smashex: Smashing
sgx enclaves using exceptions,” in ACM SIGSAC Conference on Com-
puter and Communications Security, 2021, p. 779–793.

[44] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in ACM SIGSAC Conference on Computer and Communica-
tions Security, 2019, p. 753–768.

[45] K. Colin, “Stress next generation,” 2023. [Online]. Available:
https://github.com/ColinIanKing/stress-ng

[46] R. F. Tate, “Correlation between a discrete and a continuous vari-
able. point-biserial correlation,” The Annals of Mathematical Statistics,
vol. 25, no. 3, pp. 603–607, 1954.

[47] T. Ni, G. Lan, J. Wang, Q. Zhao, and W. Xu, “Eavesdropping mobile app
activity via Radio-Frequency energy harvesting,” in USENIX Security
Symposium, 2023, pp. 3511–3528.

[48] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Cap-
kun, “Thermal covert channels on multi-core platforms,” in USENIX
Security Symposium, 2015.

[49] Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis,
Y. Oren, and Y. Yarom, “Hammerscope: Observing dram power con-
sumption using rowhammer,” in ACM SIGSAC Conference on Computer
and Communications Security, 2022, p. 547–561.

[50] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks on
x86,” in IEEE Symposium on Security and Privacy, 2021, pp. 355–371.

[51] Z. Zhang, S. Liang, F. Yao, and X. Gao, “Red alert for power leakage:
Exploiting intel rapl-induced side channels,” in Asia Conference on
Computer and Communications Security, 2021, p. 162–175.

[52] D. B. Bartolini, P. Miedl, and L. Thiele, “On the capacity of thermal
covert channels in multicores,” in European Conference on Computer
Systems, 2016.

[53] D. Cotroneo, L. D. Simone, and R. Natella, “Timing covert channel
analysis of the vxworks mils embedded hypervisor under the common
criteria security certification,” Computers & Security, 2021.

https://github.com/Irqbalance/irqbalance
https://github.com/ColinIanKing/stress-ng

14

[54] C. Chen, J. Cui, G. Qu, and J. Zhang, “Write+sync: Software cache
write covert channels exploiting memory-disk synchronization,” IEEE
Transactions on Information Forensics and Security, pp. 8066–8078,
2024.

[55] Y. Yarom and K. Falkner, “{FLUSH+ RELOAD}: A high resolution,
low noise, l3 cache {Side-Channel} attack,” in USENIX Security Sym-
posium, 2014, pp. 719–732.

[56] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-
channel attacks: Bypassing smap and kernel aslr,” in ACM SIGSAC Con-
ference on Computer and Communications Security, 2016, p. 368–379.

[57] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and D. Gruss,
“KASLR: Break it, fix it, repeat,” in Asia Conference on Computer and
Communications Security, 2020, p. 481–493.

[58] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space aslr,” in IEEE Symposium on Security and Privacy,
2013, pp. 191–205.

[59] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and D. Gruss,
“Kaslr: Break it, fix it, repeat,” in Asia Conference on Computer and
Communications Security, 2020, p. 481–493.

[60] J. Kim, S. van Schaik, D. Genkin, and Y. Yarom, “Ileakage: Browser-
based timerless speculative execution attacks on apple devices,” in ACM
SIGSAC Conference on Computer and Communications Security, 2023,
p. 2038–2052.

[61] H. Xiao and S. Ainsworth, “Hacky racers: Exploiting instruction-level
parallelism to generate stealthy fine-grained timers,” in Architectural
Support for Programming Languages and Operating Systems, 2023.

[62] H. Kim, K.-D. Kang, G. Park, S. Lee, and D. Kim, “Brokensleep:
Remote power timing attack exploiting processor idle states,” in High
Performance Computer Architecture, 2025, pp. 409–422.

[63] L. Giner, R. Czerny, C. Gruber, F. Rauscher, A. Kogler, D. D. A. Braga,
and D. Gruss, “Generic and automated drive-by gpu cache attacks from
the browser,” in Asia Conference on Computer and Communications
Security, 2024, p. 128–140.

[64] S. Gast, J. Juffinger, L. Maar, C. Royer, A. Kogler, and D. Gruss,
“Remote scheduler contention attacks,” in International Conference on
Financial Cryptography and Data Security. Springer, 2024, pp. 365–
383.

[65] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
javascript,” in Financial Cryptography and Data Security, 2017, pp.
247–267.

Xin Zhang received the B.Sc. degree in information
security from Hunan University in 2022. He is
currently pursuing the Ph.D. degree with Peking
University, Beijing, China. His research interests
include system security, computer architecture and
side channel attack.

Qingni Shen received the Ph.D. degree from the
Institute of Software Chinese Academy of Sciences,
Beijing, China, in 2006. She is currently a professor
with the School of Software and Microelectronics
and the director of PKU OCTA Lab of Blockchain
and Privacy Computing, Peking University, Bei-
jing, China. Her research interests include oper-
ating system security, cloud security and privacy,
blockchain and privacy computing, and trusted com-
puting. She is a Distinguished Member of CCF
and an ACM/IEEE Member. She is serving as the

reviewer for TOMPECS, JPDC, FGCS, Computers & Security, Information
Sciences, the Computer Journal, ICICS, TrustCom, ACNS, and so on.

Zhi Zhang received the Ph.D. degree from The Uni-
versity of New South Wales. He is a Lecturer at The
University of Western Australia. His current research
interests include hardware security, system security,
and their intersections with AI security. He was a re-
cipient of USENIX SECURITY 2024 Distinguished
Paper Award and ASIACCS 2023 Distinguished
Paper Award. He serves as an Associate Editor for
IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING. He also serves on the Pro-
gram Committees for ASPLOS, DSN, ASIACCS.

Yansong Gao (Senior Member, IEEE) is a Lecturer
at the University of Western Australia. He received
his M.Sc degree from the University of Electronic
Science and Technology of China and a Ph.D. de-
gree from the University of Adelaide, Australia. His
current research interests are AI security and privacy,
system security, and hardware security. He serves as
an Associate Editor of IEEE TRANSACTIONS ON
NEURAL NETWORKS AND LEARNING SYSTEMS.

Jiajun Zou received the B.Sc. degree in software
engineering from Hunan University in 2024. He is
currently pursuing the Master degree with Peking
University, Beijing, China. His research interests
include system security and side channel attack.

Yi Yang received the B.Sc. degree in Information
Security from Chongqing University of Posts and
Telecommunications in 2020. He is currently pur-
suing the Master degree with Peking University,
Beijing, China. His research interests include system
security and side channel attack.

Zhonghai Wu received the PhD degree from Zhe-
jiang University, Hangzhou, China, in 1997. Previ-
ously, he worked as a postdoctoral researcher with
the Institute of Computer Science and Technology,
Peking University, Beijing, China. Since then, he
has been involved both in research and development
of distributed system, service, and security. He is
currently the dean of the School of Software and
Microelectronics, Peking University, Beijing, China.
His research interests include cloud computing, data
intelligence, and system security.

	Introduction
	Background and Related Work
	Interrupt Side Channel Attack
	Model Fingerprinting Attack
	Non-movable Interrupts

	Identifying Exploitable Non-movable Interrupts
	Threat Model and Experimental Setup
	Dynamic Analysis Technique
	Model Fingerprinting Attack

	ThermalScope and TimerScope
	ThermalScope
	TimerScope
	Characterizing ThermalScope and TimerScope

	Case Studies
	Building Covert Channels
	Breaking KASLR
	Browser-based DNN Model Fingerprinting Attack

	Discussion
	Future Work
	Mitigation Strategies

	Conclusion
	References
	Biographies
	Xin Zhang
	Qingni Shen
	Zhi Zhang
	Yansong Gao
	Jiajun Zou
	Yi Yang
	Zhonghai Wu

