
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 3, pp. 693–716. DOI:10.46586/tches.v2025.i3.693-716

Practical Opcode-based Fault Attack on AES-NI
Xue Gong1, Xin Zhang2, Qianmei Wu1, Fan Zhang1∗, Junge Xu1,

Qingni Shen2 and Zhi Zhang3

1 School of Cyber Science and Technology, College of Computer Science and Technology, Zhejiang
University, Hangzhou, 310027, China, {xuegong;qianmei;fanzhang;jungexu}@zju.edu.cn

2 School of Software and Microelectronics, Peking University, Beijing 100871, China,
zhangxin00@stu.pku.edu.cn,qingnishen@ss.pku.edu.cn

3 Department of Computer Science and Software Engineering, University of Western Australia,
Perth, WA 6009, Australia, zzhangphd@gmail.com

Abstract. AES New Instructions (AES-NI) is a set of hardware instructions introduced
by Intel to accelerate AES encryption and decryption, significantly improving efficiency
across various cryptographic applications. While AES-NI effectively mitigates certain
side-channel attacks, its resilience against faults induced by active or malicious fault
injection remains unclear.
In this paper, we conduct a comprehensive security analysis of AES-NI. By analyzing
the opcodes of AES-NI, we identify six pairs of instructions with only a single-bit
difference, making them susceptible to bit-flip-type attacks. This vulnerability allows
attackers to recover AES keys in both Electronic Codebook (ECB) and Cipher Block
Chaining (CBC) modes. We introduce a novel Opcode-based Fault Analysis (OFA)
method, employing Gaussian elimination to reduce the search space of the last
round key. In particular, with one pair of correct and faulty ciphertexts, OFA can
reduce the key search space to 232 for a 128-bit key length. To further reduce the
key space for AES-192 and AES-256, we propose the Enhanced Opcode-based Fault
Analysis (EOFA), which, compared to exhaustive search, reduces the key space by
factors of 2160 and 2192, respectively.
Finally, we demonstrate the feasibility of our findings by conducting physical end-
to-end attacks. Specifically, Rowhammer is leveraged to flip vulnerable opcodes
and OFA as well as EOFA techniques are applied to recover secret keys from AES
implementations. Our experimental results for AES-ECB-128, AES-ECB-192, and
AES-CBC-128 demonstrate that key recovery can be efficiently achieved within 1.03
to 1.36 hours, varying with the cipher. This work highlights a critical vulnerability in
AES-NI and outlines a new and novel pathway for fault-based attacks against modern
cryptographic implementations.
Keywords: Rowhammer · AES-NI · Fault Analysis · Fault Attack · OFA · EOFA

1 Introduction
In recent years, a number of cryptographic applications have been proposed to achieve
various security goals, such as key exchange, signature, authentication and encryp-
tion [DH76, BBCT22, ABC+24]. The security analysis of these cryptographic applications
can be categorized into two types: algorithm-oriented analysis and implementation-oriented
analysis. Particularly, even when cryptographic algorithms are theoretically secure, their
security guarantee can still be challenged after they are implemented on a certain hardware.
Hence, a number of implementation-oriented analysis is imperative for ensuring the security
of cryptographic applications [ZLZ+18, ZZJ+20, ZHF+23, HAZ+24].

*The corresponding author.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2025-01-15 Accepted: 2025-03-15 Published: 2025-06-05

https://doi.org/10.46586/tches.v2025.i3.693-716
mailto:xuegong@zju.edu.cn,qianmei@zju.edu.cn,fanzhang@zju.edu.cn,jungexu@zju.edu.cn
mailto:zhangxin00@stu.pku.edu.cn,qingnishen@ss.pku.edu.cn
mailto:zzhangphd@gmail.com
http://creativecommons.org/licenses/by/4.0/


694 Practical Opcode-based Fault Attack on AES-NI

Fault Attacks (FAs) [GZZ+25, CVM+21, LTH22, MDT+23, FKK+22] are a type of
implementation-oriented attacks, which consists of two primary steps, i.e., fault injection
and fault analysis. While the original FA relies on sharp voltage fluctuations [MOG+20,
CVM+21, LTH22] or physical proximity [JT12] to inject the faults into hardware, recent
work has removed the two requirements by applying Rowhammer-based faults [MDT+23,
FKK+22], which allows a remote attacker to trigger hardware faults in the memory.

The Advanced Encryption Standard (AES) algorithm [RD01], established by NIST in
2001, is now widely deployed in various applications. In Transport Layer Security (TLS),
AES encrypts data to be exchanged between clients and servers, ensuring its confidentiality
and integrity [Res18]. Besides, AES is also utilized by many Virtual Private Networks
(VPNs) to safeguard network traffic from eavesdropping and tampering. Various file
encryption tools, including VeraCrypt and DiskCryptor, rely on AES to encrypt files and
volumes, providing disk encryption functionality to safeguard sensitive data stored on
computer systems. Given the pivotal role of AES in modern cryptography, analyzing the
security of its implementation has become increasingly important.

AES New Instructions Set (AES-NI) is a set of instructions introduced with the 2010
Intel processor line, offering fast and secure encryption and decryption using AES. Due
to AES’s widespread adoption as the predominant block cipher in various protocols and
applications, AES-NI is extensively utilized across diverse scenarios.

AES-NI includes six instructions for full hardware support for AES, which are listed in
Table 1. Specifically, four instructions (AESENC, AESENCLAST, AESDEC, and AESDE-
LAST) support AES encryption and decryption, while the remaining two (AESIMC and
AESKEYGENASSIST) are designed for AES key expansion. Grounded on this, AES-NI
provides a notable boost in performance compared to other pure-software implementations.
For an n-round encryption process, AES-NI repeats the AESENC instruction n − 1 times,
followed by the AESENCLAST instruction in the final stage.

Table 1: Instructions in AES-NI.
Instruction Description
AESENC One Round of an AES Encryption

AESENCLAST Last Round of an AES Encryption
AESDEC One Round of an AES Decryption

AESDECLAST Last Round of an AES Decryption
AESIMC AES InvMixColumn Transformation

AESKEYGENASSIST AES Round Key Generation Assist

Intel has stated in the white paper [Gue10] that AES-NI is designed to mitigate all of
the known timing and cache side-channel leakages of sensitive data. Its latency remains
consistent regardless of data input, and since all computations occur internally within
the hardware, there is no need for lookup tables. Thus, when AES instructions are
appropriately employed, both encryption/decryption and key expansion processes exhibit
data-independent timing and solely involve data-independent memory access. Consequently,
AES instructions facilitate the development of high-performance AES-dependent software
that is concurrently shielded against known software side-channel attacks. Therefore,
AES-NI is regarded as a main-stream countermeasure to mitigate presently known timing
and cache attacks on AES [MKS12].

Although AES-NI can mitigate certain types of side-channel attacks, its effectiveness
in countering actively and maliciously induced faults remains uncertain. To date, the
only fault analysis targeting AES-NI is presented in [TMA11], with the necessary fault
injections implemented in [MOG+20, CVM+21]. However, both voltage-based fault
injection techniques have been mitigated through a microcode update. This research is
primarily motivated by the absence of practical fault attacks against AES-NI.



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 695

1.1 Our Contribution
In this paper, we conduct a comprehensive security analysis on AES implementation
leveraging AES-NI instructions. Interestingly, our findings reveal that the instructions in
AES-NI are vulnerable to bitflip-type attacks, posing significant threats to the security of
AES implementations. In detail, our contributions are as follows:

Disclosing vulnerabilities in AES-NI: a novel method. By analyzing the opcodes
of AES-NI, we identified six pairs of instructions, wherein the opcodes of two instructions
within each pair differ by merely 1 bit, making them potentially vulnerable to bitflip-type
fault attacks. Through a thorough analysis, we confirmed that the first pair, comprising
AESENC and AESENCLAST, enables the recovery of the AES key in Electronic Codebook
(ECB) mode. Likewise, the second pair, AESDEC and AESDECLAST, facilitates key
retrieval in Cipher Block Chaining (CBC) mode. To the best of our knowledge, this is the
first paper to expose the code flip vulnerability of AES-NI.

Proposing the Opcode-based Fault Analysis (OFA): an efficient analysis. For
AES-128, we successfully utilize Gaussian elimination to solve equations over finite fields
in the fault analysis process, effectively reducing the solution space of the final round
key to 232. In this case, the master key can be derived from the final round key by
reversing the key expansion scheme. This optimization accelerates the analysis by a factor
of approximately 296 compared to brute-force search. Leveraging AES-NI acceleration,
this process can be completed within 2 hours.

Presenting Enhanced Opcode-based Fault Analysis (EOFA) for key lengths
of 192 and 256: an enhanced solution. For AES-192 and AES-256, the final round
keys are 128 bits, while the master keys are 192 and 256 bits, respectively. Even if the
final round keys are known, this information is insufficient to reconstruct the master key.
To address this challenge, we propose an Enhanced Opcode-based Fault Analysis (EOFA)
approach, which augments the original OFA with additional fault injections to derive
new sets of correct and faulty ciphertext pairs. This refinement reduces the key space for
AES-192 to 232 and for AES-256 to 264, respectively.

Conducting End-to-end Attacks: a real-world application. We leverage
Rowhammer to flip the identified vulnerable opcodes and exploit OFA and EOFA to
achieve the secret-key recovery. We have successfully performed end-to-end attacks against
four ciphers implemented using AES-NI: AES-ECB-128, AES-ECB-192, AES-CBC-128
(with a known IV), and AES-CBC-128 (with an unknown IV). With a single pair of resulted
correct and faulty ciphertexts for each cipher, we perform post-fault analysis to recover
the secret key. This analysis is efficient, with key recovery taking between 1.03 and 1.36
hours, depending on the cipher used.

1.2 Organization
The paper is organized as follows: Section 2 provides the background, notations, and
definitions. Section 3 reviews related work. Section 4 introduces OFA on AES-NI, while
Section 5 presents the enhanced one called EOFA. Subsequently, OFA on AES-CBC mode
is discussed in Section 6. Section 7 showcases end-to-end attacks on four ciphers, and
Section 8 provides a discussion. Finally, Section 9 concludes the paper.

2 Background
2.1 Notations
We denote the finite field of order q as Fq. Given that AES is the primary focus of this
paper, we set q = 28, and consequently, F28 is referred to simply as F throughout this paper.
Let the symbols “⊕” and “·” denote the addition and multiplication over F, respectively.



696 Practical Opcode-based Fault Attack on AES-NI

The specific numbers over F are represented in hexadecimal notation (e.g., “02” for “2” and
“d4” for “211”). Note that parentheses (e.g., {02}) will be applied sometimes to distinguish
these numbers in equations.

In the context of AES, the plaintext and ciphertext are denoted as P and C, respectively.
Corresponding to C, the faulty ones are represented as C

′ or C
′′ . EK and DK represents

the encryption and decryption process, respectively. During the key schedule of AES, Ks

denotes the master key, while the r-th round key is represented as Kr. Let the symbol Nk

denote the length of the key divided by 32. Nr denotes the number of AES rounds. As
AES is executed, X, Y , Z and W are utilized to denote the intermediate states, which
can be represented in matrix form, with X as an example shown below:

X =


x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

 .

Note that the element xi,j ∈ F with 0 ≤ i, j ≤ 3 denotes one byte for AES. Accordingly,

X[c] =


x0,c

x1,c

x2,c

x3,c

 is a 32-bit word for 0 ≤ c ≤ 3 and X is a 128-bit block (or saying a

matrix over F4×4). For two matrices X and Y over F, we denote their product as X × Y
(or in short XY ).

2.2 AES

During the execution of AES, data is encrypted and decrypted within 128-bit blocks using
key length of 128, 192, or 256 bits. The specific number of AES rounds varies with the key
length. Specifically, 10 rounds for a 128-bit key, 12 rounds for a 192-bit key and 14 rounds
for a 256-bit key. Typically, one AES round consists of four byte-oriented transformations
applied to the state: SubBytes, ShiftRows, MixColumns, and AddRoundKey. However,
in the final AES round, MixColumns is omitted, leaving only SubBytes, ShiftRows, and
AddRoundKey.

Since our proposed attack approach is largely related to MixColumns operation of
AES, we provide a detailed description of MixColumns process in this sub-section to
make this paper to be self-contained. MixColumns transforms the state by multiplying
each of its four columns with a fixed matrix A, which is presented below:

A =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


Thus, the MixColumns function can be represented as:

s
′

0,c

s
′

1,c

s
′

2,c

s
′

3,c

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




s0,c

s1,c

s2,c

s3,c

 , for 0 ≤ c ≤ 3.

For each element, we have:



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 697

s
′

0,c = {02} · s0,c ⊕ {03} · s1,c ⊕ s2,c ⊕ s3,c

s
′

1,c = s0,c ⊕ {02} · s1,c ⊕ {03} · s2,c ⊕ s3,c

s
′

2,c = s0,c ⊕ s1,c ⊕ {02} · s2,c ⊕ {03} · s3,c

s
′

3,c = {03} · s0,c ⊕ s1,c ⊕ s2,c ⊕ {02} · s3,c

, for 0 ≤ c ≤ 3.

During the computation of MixColumns, XTIME(b) is defined to compute b · {02}
for b ∈ F. Hence, the inversion of XTIME(b) = c is represented as b = {02}−1 · c, or
b = XTIME−1(c) for b, c ∈ F. For example, as {57} · {02} = XTIME({57}) = {ae},
we have {02}−1 · {ae} = {57}. In the remainder of this paper, the multiplication over
F is represented without the use of “·” and parentheses for simplicity. For example,
{02} · x0,0 ⊕ {03} · x1,0 is simplified by 2x0,0 ⊕ 3x1,0. Accordingly, 2−1 is the simple form
of {2}−1 and thus 2−1(·) represents XTIME−1(·).

3 Related Works
3.1 Differential Fault Analysis
The concept of fault attacks was initially introduced by Boneh et al. in 1996 with their work
on RSA-CRT [BDL97]. Subsequently, Biham and Shamir proposed the differential fault
analysis (DFA) on DES [BS97], amalgamating fault attacks with differential cryptanalysis.
Since its inception, DFA has played a crucial role in compromising various block ciphers.
DFA exploits the difference between correct and faulty ciphertexts for a fixed input. In
this form of fault attack, the adversary provides an initial message as input to the cipher,
which then traverses the oracle to produce the original ciphertext. Meanwhile, at certain
intermediate stages, the attacker introduces faults by altering bits at positions such as
bit, nibble, or byte in the state, resulting in a faulty ciphertext at the output. Assuming
there are n rounds in the cipher, and the faulty ciphertext C

′ is generated by injecting a
fault at the r-th round, then the entire cipher can be regarded as a reduced cipher after
the fault, where the difference spreads in the state through only n − r rounds. Leveraging
these pairs of faulty and original ciphertexts (C, C

′), the attacker endeavors to uncover
secret information by employing classical cryptanalytic techniques.

3.2 Fault Attacks on AES-NI
In 2020, Murdock et al. demonstrated that Plundervolt [MOG+20], a software-based
undervolting (also known as glitching) fault injection method, can induce a bit-flip in the
leftmost two bytes of the AES-NI round function’s output. By exploiting this fault in round
8 and employing the Differential Fault Analysis (DFA) technique described by Tunstall et
al. in [TMA11], this attack can recover the 128-bit AES key using a pair of correct
and faulty ciphertexts derived from the same plaintext, with an average computational
complexity of 232 + 256 encryptions. In 2021, Chen et al. utilized VoltPillager [CVM+21],
a hardware-based fault injection method, to reproduce the Plundervolt attack on AES-NI.
However, Plundervolt has been mitigated by Intel, while VoltPillager requires physical
access to SGX and is beyond the scope of SGX threat model. Table 2 compares our Opcode
Fault Analysis approach with Plundervolt and VoltPillager. While both Plundervolt and
VoltPillager induce bit-flip in the output state of AES-NI, our OFA method employs a
different fault model where opcodes are faulted. In terms of fault analysis, Plundervolt and
VoltPillager utilize DFA in [TMA11], whereas our approach utilizes a novel opcode-based
fault analysis framework. The computational complexity of our fault analysis process
is comparable to that of DFA. Regarding fault injection success rates, we provide the
Rowhammer fault injection success probability for our OFA method. For Plundervolt and



698 Practical Opcode-based Fault Attack on AES-NI

VoltPillager, the probability of injecting a fault into any particular AES round is equal.
However, since fault analysis specifically requires faults in the 8th round, their effective
fault injection success rate is approximately 10%, assuming perfect precision in voltage
fault injection.

Table 2: Comparison of Different Fault Attacks on AES-NI.
Fault Model Time Complexity Success Rate

OFA single bit flip on opcodes 232 6.2% (empirical)
Plundervolt single bit flip on intermediate state 232 + 256 10% (estimated)
VoltPillager single bit flip on intermediate state 232 + 256 10% (estimated)

3.3 Rowhammer
In our attack, we induce bit flips through Rowhammer, a software-triggered hardware fault
that flips bits in Dynamic Random Access Memory (DRAM). This phenomenon was first
introduced in 2014 by Kim et al. [KDK+14].

Modern DRAM designs have reduced supply voltages, leading to smaller charges in
the capacitors that store individual bits. Electromagnetic interference generated during
the access of neighboring bits can affect these capacitors. Kim et al. [KDK+14] identified
voltage fluctuations on an internal wire known as the wordline as the primary cause of
DRAM disturbance issues.

Specifically, DRAM is organized as a two-dimensional array of cells, with each row
of cells controlled by a dedicated wordline. Accessing a cell in a specific row can enable
the corresponding wordline by raising its voltage. Repeated activations of the same row
cause the wordline to toggle on and off, generating voltage variations that disturb adjacent
rows. This disturbance accelerates charge leakage in some cells, potentially leading to
errors if the charge dissipates before being refreshed. The repeatedly activated row is
called the “aggressor row”, while the row experiencing induced bit flips is referred to as
“victim row” [KDK+14, JWS+24]. Consequently, physical pages mapped to victim rows
or aggressor rows are termed victim pages and aggressor pages, respectively. The term
“hammer patterns” describes the number of aggressor rows required to induce bit flips in a
victim row [ZHC+21].

4 Opcode-based Fault Attack on AES-NI
4.1 Threat Model
Similar to existing Rowhammer attacks that recover secret keys from cryptographic
implementations [WTM+20, MIS20, FKK+22, MDT+23, AWK+25], we make the following
assumptions. The attacker is able to initiate an arbitrary unprivileged user process without
requiring root privileges, and thus lacks access to the mapping between virtual and physical
memory. The victim executes the AES encryption and decryption program implemented
with AES-NI, which can be queried by the attacker. The attacker is aware of the specific
cryptographic scheme, including the bit length of the secret key. However, it is assumed
that the kernel executing the victim process is secure and effectively enforces isolation
between the attacker and the victim. Note that it is not required for the attacker and
victim to share the same kernel, as long as the DRAM modules are shared and vulnerable
to Rowhammer-induced bit flips.

4.2 Potential Fault Injection Locations
As highlighted in red in Table 3, six pairs of instructions in AES-NI are identified, where
the opcodes of the two instructions in each pair differ by only one bit. Due to this minimal
difference, a one-bit-flip fault attack can easily alter an instruction to another within the



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 699

Table 3: Difference in Opcodes of AES-NI.
Pair Instruction Opcodes Difference in Opcodes

1 AESENC 0x66,0x0F,0x38,0xDC * * * * * * * 1100
AESENCLAST 0x66,0x0F,0x38,0xDD * * * * * * * 1101

2 AESDEC 0x66,0x0F,0x38,0xDE * * * * * * * 1110
AESDECLAST 0x66,0x0F,0x38,0xDF * * * * * * * 1111

3 AESENC 0x66,0x0F,0x38,0xDC * * * * * * * 1100
AESDEC 0x66,0x0F,0x38,0xDE * * * * * * * 1110

4 AESENCLAST 0x66,0x0F,0x38,0xDD * * * * * * * 1101
AESDECLAST 0x66,0x0F,0x38,0xDF * * * * * * * 1111

5 AESIMC 0x66,0x0F,0x38,0xDB * * * * * * * 1011
AESDECLAST 0x66,0x0F,0x38,0xDF * * * * * * * 1111

6 AESDECLAST 0x66,0x0F,0x38,0xDF * * * * * 1000 * *
AESKEYGENASSIST 0x66,0x0F,0x3A,0xDF * * * * * 1010 * *

pair, resulting in a faulty instruction flow that can be leveraged by adversaries to retrieve
the secret key. Our research is motivated by such design of opcodes in AES-NI and the
associated vulnerability it brings. For instance, as detailed in the subsequent sections, the
first pair (AESENC and AESENCLAST) can be exploited to recover the key of AES in
ECB mode, while the second pair (AESDEC and AESDECLAST) can be furtehr leveraged
to recover the key of AES CBC mode.

4.3 Opcode-based Fault Analysis
Assuming that AES has N rounds, recall that for the first N − 1 rounds, each AES
round consists of four operations, namely SubBytes, ShiftRows, MixColumns, and
AddRoundKey. While the last round excludes the MixColumns operation, involving
only three operations. Using AES-NI, the AESENC instruction is used to execute the first
N − 1 rounds, performing all four operations for one AES round, while AESENCLAST
is designed for the last AES round, executing only three operations. As highlighted in
Table 3, AESENC and AESENCLAST differ by only one bit. Hence, if a one-bit-flip fault
is injected, converting AESENCLAST to AESENC, the last round of AES will perform an
additional MixColumns operation, resulting in faulty encryption that can be exploited by
adversaries. On this basis, we propose Opcode-based Fault Attack (OFA), which exploits
the one-bit distinction between opcode pairs to retrieve secret keys.

As illustrated in Figure 1, OFA generally performs one correct AES encryption (as
shown in the left flow of Figure 1) and one faulty AES encryption (as shown in the right
flow of Figure 1), subsequently narrowing the search space for the last-round key KN to
232. Below we outline the steps for OFA one by one:

Step 1: Correct Encryption. The attacker uses the device to encrypt a random
plaintext P , which is 128-bit. The plaintext is known to the attacker but not deliberately
constructed. The attacker collects the ciphertext, which is denoted as C.

Step 2: Fault Injection. The attacker injects a fault by Rowhammer. The fault can
cause a bit flip in the opcode of AESENCLAST. Thus, the AESENCLAST is altered to
AESENC, causing the last AES round to perform an additional MixColumns.

Step 3: Faulty Encryption. The attacker uses the faulty algorithm to encrypt the
plaintext P again. At this time, the attacker obtains the faulty ciphertext C

′ .
Step 4: Fault Analysis/Key Recovery. The attacker performs the offline analysis

by doing Opcode-based Fault Analysis with (P, C, C
′) to recover the key.

Now, we provide a more detailed description of OFA. We denote the 128-bit state after
ShiftRows in the last round as X. The last round of AddRoundKey operation can be
represented as:

X ⊕ KN = C (1)



700 Practical Opcode-based Fault Attack on AES-NI

P

N − 1 Rounds of
AESENC

Last Round
AESENCLAST(DD)

X

⊕KN

C

1. SubBytes
2. ShiftRows
3. MixColumns
4. AddRoundKey

1. SubBytes
2. ShiftRows(X)
3. AddRoundKey

P

N − 1 Rounds of
AESENC

Last Round
AESENCLAST(DD)

AESENC(DC)

AX

⊕KN

C
′

1. SubBytes
2. ShiftRows
3. MixColumns
4. AddRoundKey

1. SubBytes
2. ShiftRows(X)

3. MixColumns(AX)

4. AddRoundKey

OFA

KN : 232

Figure 1: The overview of OFA.

By injecting faults into the device via Rowhammer, the last round operation AESEN-
CLAST is changed to AESENC. After the fault injection, the attacker uses the faulty
device to encrypt the same plaintext again. In the faulty encryption, state X goes through
an additional MixColumns in the last round. The MixColumns function is equivalent to
multiplying a matrix A to the left side of X. After the MixColumns and the AddRound-
Key operations, the attacker gets the faulty ciphertext. This process can be represented
as:

AX ⊕ KN = C
′
. (2)

By applying the XOR operation to Equation (1) and Equation (2), we obtain:

X ⊕ AX = C ⊕ C
′
. (3)

Equation (3) is equivalent to:
(I ⊕ A)X = C ⊕ C

′
. (4)

Note that in Equation (4), the coefficient matrix A is public and accessible to adversaries,
while matrix I represents a fourth-order identity matrix. According to the threat model
outlined in Section 4.1, both the correct ciphertext C and the faulty ciphertext C

′ are also
known to adversaries. Consequently, the unknown matrix X can be determined by solving
Equation (4). Subsequently, we are able to recover the last round key KN by substituting
X into Equation (1), as shown below:

KN = X ⊕ C. (5)

Therefore, the key to recovering KN lies in solving Equation (4) to obtain X, which will
be detailed in the following sub-section.

4.3.1 Equation Solving

In Equation (4), recall that A is a public matrix corresponding to MixColumns operation
and I is the fourth-order identity matrix. Hence, we have:

A ⊕ I =


03 03 01 01
01 03 03 01
01 01 03 03
03 01 01 03

 . (6)



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 701

Let us denote C ⊕ C
′ = Y , and Y = [Y [0], Y [1], Y [2], Y [3]] with Y [c] =


y0,c

y1,c

y2,c

y3,c

 for

0 ≤ c ≤ 3. Recall that X = [X[0], X[1], X[2], X[3]] with X[c] =


x0,c

x1,c

x2,c

x3,c

 for 0 ≤ c ≤ 3.

Applying Equation (4), we have:
03 03 01 01
01 03 03 01
01 01 03 03
03 01 01 03




x0,c

x1,c

x2,c

x3,c

 =


y0,c

y1,c

y2,c

y3,c

 , for 0 ≤ c ≤ 3. (7)

Hence, for each element, we can obtain:

3x0,c ⊕ 3x1,c ⊕ x2,c ⊕ x3,c = y0,c

x0,c ⊕ 3x1,c ⊕ 3x2,c ⊕ x3,c = y1,c

x0,c ⊕ x1,c ⊕ 3x2,c ⊕ 3x3,c = y2,c

3x0,c ⊕ x1,c ⊕ x2,c ⊕ 3x3,c = y3,c

, for 0 ≤ c ≤ 3. (8)

To solve the equation system, Gaussian Elimination over F can be employed, which
uses elementary row operations to create zeros below the pivot element in the first column.
After Gaussian Elimination, the corresponding equation system is:

3x0,c ⊕ 3x1,c ⊕ x2,c ⊕ x3,c =y0,c

2x0,c ⊕ 2x2,c =y1,c ⊕ y0,c

2x1,c ⊕ 2x3,c =y2,c ⊕ y1,c

, for 0 ≤ c ≤ 3. (9)

To solve the above equation system, we need an extra function to eliminate the
coefficient to “01”, which is the inversion of XTIME . For efficiency, all the results of
XTIME−1(b) with b ∈ F can be computed in advance and stored in a table before the
equation solving. Note that the linear system consists of four variables but only three
equations, resulting in the presence of a free variable. We designate x0,c as the free variable.
Thus, the solution to Equation (9) is:

x1,c =2−1[3x0,c ⊕ 2−1(2x0,c ⊕ y1,c ⊕ y0,c) ⊕ 2−1(y2,c ⊕ y1,c) ⊕ y0,c]
x2,c =2−1(2x0,c ⊕ y1,c ⊕ y0,c)
x3,c =2−1[3x0,c ⊕ 2−1(2x0,c ⊕ y1,c ⊕ y0,c) ⊕ 2−1(y2,c ⊕ y1,c) ⊕ y0,c] ⊕ 2−1(y2,c ⊕ y1,c).

(10)
Note that Y is known and there are a total of 232 possible values for x0,c, each of which

corresponds to a distinct set of solutions for the system of equations. Each set of solutions,
in turn, corresponds to a possible key. Thus, by solving the equations, the space of final
round keys can be reduced to a size of 232.

4.3.2 From the Last Round Key to the Master Key

By applying Gaussian Elimination, the key space for the last round key in AES has been
reduced to 232. In this subsection, we outline the process for deducing the master key
Ks from the reduced key space of the last round key KN . Since the key length of master
key Ks varies across AES-128, AES-196 and AES-256, leading to different determination
processes, we will address each case separately.



702 Practical Opcode-based Fault Attack on AES-NI

Considering AES-128, recall that the key length is 128 bits. Our goal is to deduce each
round key, with particular emphasis on the master key Ks. Algorithm 1 illustrates the
inversion of key expansion in [DR99] for Nk ≤ 6. Note that W [i] is a 32-bit word to represent
the round key. For example, for AES-128, the last round key is [W [40], W [41], W [42], W [43]].
In Algorithm 1, RotByte is a cyclic permutation and Rcon[i/Nk] is the specific round
constant [DR99]. For each candidate of the last round key, a corresponding possible
master key is derived using Algorithm 1. Recall that in our fault model, plaintext is
randomly selected but known to the attacker. Consequently, the attacker can utilize each
possible master key to decrypt the ciphertext and verify whether it matches the plaintext.
Ultimately, the actual master key Ks can be determined by successfully matching the
decrypted ciphertext with the known plaintext.

Algorithm 1 Inversion of Key Expansion for Nk ≤ 6
Input: byte KN [4 ∗ 4]: the last round key
Output: word W [4 ∗ (Nr + 1)]: the full round key

1: for i = 0; i < 4; i + + do
2: W [4 ∗ Nr + i] = (Kr[4 ∗ i], Kr[4 ∗ i + 1], Kr[4 ∗ i + 2], Kr[4 ∗ i + 3])
3: end for
4: for i = 4 ∗ Nr + 3; i ≥ Nk; i − − do
5: temp = W [i − 1]
6: if i mod Nk == 0 then
7: temp = SubBytes(RotByte(temp)) ⊕ Rcon[i/Nk ]
8: end if
9: W [i − Nk] = W [i] ⊕ temp

10: end for

Considering AES-192, the master key is 192 bits while the last round key remains 128
bits. With the last round key as the input for Algorithm 1, we attempt to deduce the master
key. Specifically, with each candidate value obtained from the previous step of solving
equations, the last round key [W [48], W [49], W [50], W [51]] is determined. Recall that the
penultimate round key is [W [44], W [45], W [46], W [47]]. When applying Algorithm 1 to get
the penultimate round key, we have

W [45] = W [51 − 6] = W [51] ⊕ W [50],

W [44] = W [50 − 6] = W [50] ⊕ W [49].

However, W [47] and W [46] are unknown and thus cannot be determined according to
Algorithm 1. This implies that an extra 264 trials is required to recover the master key.

Considering AES-256, the master key is 256 bits while the last round key remains 128
bits as well. For AES-256, Nk = 8, the last round key is [W [56], W [57], W [58], W [59]].
When applying Algorithm 2, in the first loop, we get W [51] = W [59] ⊕ W [58]. However,
the penultimate round key [W [52], W [53], W [54], W [55]] remains unknown and cannot be
deduced from Algorithm 2. The attacker must perform an additional 2128 trials of the
penultimate round key to obtain the master key.

In conclusion, the master key of AES-128 can be obtained by searching a key space
of 232, which is a manageable range for modern computers. However, for AES-192 and
AES-256, the key search spaces are significantly larger, up to 296 and 2160, respectively,
making it impractical to complete the search on a personal computer.

5 Enhanced Opcode-based Fault Analysis
In this section, we propose Enhanced Opcode-based Fault Analysis (EOFA) to address the
challenges of breaking AES-192 and AES-256. As is analyzed above, the search space for



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 703

Algorithm 2 Inversion of Key Expansion for Nk > 6
Input: byte KN [4 ∗ 4]
Output: word W [4 ∗ (Nr + 1)]: the full round key

1: for i = 0; i < 4; i + + do
2: W [4 ∗ Nr + i] = (Kr[4 ∗ i], Kr[4 ∗ i + 1], Kr[4 ∗ i + 2], Kr[4 ∗ i + 3])
3: end for
4: for i = 4 ∗ Nr + 3; i ≥ Nk; i − − do
5: temp = W [i − 1]
6: if i mod Nk == 0 then
7: temp = SubBytes(RotByte(temp)) ⊕ Rcon[i/Nk ]
8: else
9: if i mod Nk == 4 then

10: temp = SubBytes(temp)
11: end if
12: end if
13: W [i − Nk] = W [i] ⊕ temp
14: end for

AES-192 and AES-256 are impractical for an attacker with limited computing resources.
Therefore, we propose a refined strategy to further reduce the key search space for AES-192
and AES-256. In this strategy, the attacker executes the aforementioned Rowhammer
attack, collecting C and C

′ , and applies OFA accordingly. Subsequently, a new fault is
introduced in the penultimate round, changing the AESENC instruction to AESENCLAST.
This fault either accumulates with the previous fault (Case 1) or can be injected upon
device reboot (Case 2).

The strategy for further breaking AES-192 and AES-256 is outlined as follows:
Phase 1: The basic OFA. As shown in Figure 1, before fault injection, the attacker

obtains the correct ciphertext C. A fault is injected into the AES-NI instruction AES-
ENCLAST (0x66, 0x0F, 0x38, 0xDD), altering it to AESENC (0x66, 0x0F, 0x38, 0xDC).
Then the attacker encrypts the same plaintext to produce the faulty ciphertext C

′ . By
applying OFA with (C, C

′), the attacker gets 232 candidates for the last round key.
Phase 2: Fault injection in the penultimate round. As shown in Figure 2, in this

phase, the attacker with the double-sided Rowhammer ability injects an extra fault into
AES-NI, altering the opcode of the penultimate round encryption from AESENC (0x66,
0x0F, 0x38, 0xDC) to AESENCLAST (0x66, 0x0F, 0x38, 0xDD). The newly injected fault
can accumulate with the fault from Phase 1, as shown in Figure 2a, or the new fault can
be injected after the device reboots, as depicted in Figure 2b. After the fault injection, the
attacker uses the faulty device to encrypt the same plaintext again and obtains a faulty
ciphertext, C

′′ .
Phase 3: OFA on the penultimate round. In this phase, the attacker uses C

′

and C
′′ to recover the penultimate round key KN−1 for AES-192 and AES-256. Recall

that the attacker has 232 candidates for the last round key KN . With each candidate,
the attacker can decrypt the last round. Regarding Case 1, as shown in Figure 2a, the
decryption is the reversion of AESENC using KN . While considering Case 2, as shown in
Figure 2b, the decryption includes both the reversion of AESENC and AESENCLAST.
After the decryption, the values of Y1 and Y2 are attained.

The attacker applies OFA in to (Y1, Y2). The input is the same plaintext, and the
functions remain identical before the penultimate round. In the penultimate round, after
the additional fault injection, AESENC is changed to AESENCLAST. Consequently, for
Y2, the MixColumns function is omitted. We denote the state after the ShiftRows in
the penultimate round as Z. For Y1, the MixColumns function operates as a matrix



704 Practical Opcode-based Fault Attack on AES-NI

OFA

KN−1: 2
32

P

...

Penultimate Round
AESENC(DC)

Last Round
AESENCLAST(DD)

AESENC(DC)

C
′

⊕KN

Y1

⊕KN−1

AZ

P

...

Penultimate Round
AESENC(DC)

AESENCLAST(DD)

Last Round
AESENCLAST(DD)

AESENC(DC)

⊕KN

C
′′

Y2

⊕KN−1

ZPhase 2

(a) Case 1.

OFA

KN−1: 2
32

P

...

Penultimate Round
AESENC(DC)

Last Round
AESENCLAST(DD)

AESENC(DC)

C
′

⊕KN

Y1

⊕KN−1

AZ

P

...

Penultimate Round
AESENC(DC)

AESENCLAST(DD)

Last Round
AESENCLAST(DD)

⊕KN

C
′′

Y2

⊕KN−1

ZPhase 2

refresh

(b) Case 2.

Figure 2: Phase 2: Fault injection on the penultimate round.

multiplication. Therefore, we have:

AZ ⊕ KN−1 = Y1 (11)
Z ⊕ KN−1 = Y2 (12)

By applying XOR operation on Equation (11) and Equation (12), we have:

(A ⊕ I)Z = Y1 ⊕ Y2 (13)

By performing Opcode-based Fault Analysis (detailed in Section 4.3.1) with (Y1, Y2), we
can obtain 232 candidates for KN−1. Consequently, the total search space for AES-192
and AES-256 is reduced to 232 × 232 = 264.

A Further Reduction for AES-192. In AES-192, for each candidate of the last
round key, the key schedule reveals the 64 bits of the penultimate round key KN−1. When
solving Equation (13), the 32-bit free variable has a unique value. Thus, the search space
for KN−1 is reduced to one, resulting in a total search space of 232 for the AES-192 key.

Discussion on Further Reduction for AES-256. According to the key expansion
scheme of AES-256, it is impossible to derive information about the penultimate round’s
key from the last round’s key. When performing an EOFA, AES-256 cannot utilize the
same method as AES-192 to further reduce the key search space. We attempted to inject
faults into deeper rounds, causing the AESENC instruction in the third-to-last round
to be replaced with AESENCLAST, thereby obtaining an additional set of correct and
faulty ciphertext pairs. However, when employing OFA on the third-to-last round, it is
necessary to decrypt the last two rounds using 264 possible keys from the previous step.
Consequently, the total key search space in this approach remains 264.

In summary, by applying EOFA, the key search space of AES-192 is reduced to 232,
and the key search space for AES-256 is reduced to 264. Compared to an exhaustive search,
EOFA reduces the key space by factors of 2160 and 2192, respectively.

6 Extensions to AES-CBC Mode
In this Section, we discuss how to extend our fault attack to the CBC mode of AES,
considering different assumptions about the attacker.



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 705

6.1 The CBC Mode
The characteristic of AES-CBC mode is that the encryption result of the previous ciphertext
block is XORed with the current plaintext block prior to encryption, except for the first
block, which uses an Initialization Vector (IV) instead. The purpose of this additional
operation is to increase the complexity of the encryption process, ensuring that identical
plaintext blocks do not produce the same ciphertext blocks, thereby enhancing the overall
security of the encryption. The CBC mode is defined as follows:

CBC Encryption:
C1 =EK(P1 ⊕ IV );
Cj =EK(Pj ⊕ Cj−1), for j = 2 . . . n.

(14)

CBC Decryption:
P1 =DK(C1) ⊕ IV ;
Pj =DK(Cj) ⊕ Cj−1, for j = 2 . . . n.

(15)

6.2 Key Recovery of CBC Mode
In our fault model, the attacker needs to collect both the correct and the faulty ciphertexts
for the same input. As our attack requires only one pair of correct and faulty ciphertexts,
the block size in CBC mode can be one (i.e., 128 bits). In CBC mode, the first input
block of the encryption process is P ⊕ IV . However, as stated in Appendix C of NIST SP
800-38A [Dwo01], an IV must be generated for each execution of the encryption operation.
This implies that after the attacker injects faults into the opcode and encrypts the same
plaintext, the input of the encryption will change due to the generation of a new IV. The
primary challenge in extending our attack to CBC mode lies in ensuring that the input
to the encryption process remains consistent across two encryption attempts, despite the
variation of IV.

If the attacker is assumed to be able to set IV to zero, then the first 128 bits block is just
the same as in ECB mode. Hence, the attack can proceed as described in previous sections.
However, in most cases, the attacker cannot control or predict the IV in the encryption
process. Therefore, based on the attacker’s assumptions, we provide two different methods
to carry out the attack.

6.3 Attack on CBC Mode with Known IV
We assume in each encryption call, the attacker can generate and observe the value of IV
before the encryption. The attack process is shown in Figure 3 and proceeds as follows:

Step 1: Correct Encryption. The attacker generates IV, which is denoted as IV1.
The attacker uses the device to encrypt a random plaintext P , which is 128-bit. As in ECB
mode, the plaintext is known to the adversary but not deliberately constructed. Then the
attacker collects the ciphertext, which is designated as C.

Step 2: Fault Injection. The attacker injects a fault by using Rowhammer, converting
AESENCLAST to AESENC.

Step 3: Faulty Encryption. In the faulty encryption, a new IV, denoted as IV2 is
generated. To ensure that the input of the faulty encryption matches that of the correct
encryption, the attacker constructs a plaintext satisfying P

′ = P ⊕IV1 ⊕IV2. The attacker
then uses faulty algorithm to encrypt P

′ , resulting in the faulty ciphertext C
′ .

Step 4: Fault Analysis/Key Recovery. The attacker performs the offline analysis
by doing Opcode-based Fault Analysis with (P, C, C

′) to recover the key.
Note that for CBC mode with 192-bit and 256-bit key lengths, EOFA can also be

applied to further reduce the key space. Specifically as discussed in Section 5, a new
fault can be injected into the penultimate round, flipping AESENC to AESENCLAST
and producing a new faulty ciphertext C

′′ . The attacker uses C
′ and C

′′ to obtain 232



706 Practical Opcode-based Fault Attack on AES-NI

IV1 P

⊕
P ⊕ IV1

N − 1 Rounds of
AESENC

Last Round
AESENCLAST(DD)

X

⊕KN

C

OFA

KN : 232

IV2 P
′
= P ⊕ IV1 ⊕ IV2

⊕

N − 1 Rounds of
AESENC

P ⊕ IV1

Last Round
AESENC(DC)

AX

⊕KN

C
′

Figure 3: Attack on CBC mode with known IV.

candidates for KN−1. The total key search space is reduced to 232 for 192-bit keys and
264 for 256-bit keys.

6.4 Attack on CBC Mode with Unknown IV

IV1

S

N − 1 Rounds of
AESDEC(DE)

Last Round
AESDECLAST(DF)

X

⊕KN
Y

⊕

Q

OFA

KN : 232

IV2

S

⊕

N − 1 Rounds of
AESDEC(DE)

Last Round
AESDEC(DE)

A−1X

⊕KN

Y
′

Q
′

Figure 4: Attack on CBC mode with unknown IV.

In some circumstances, the value of IV is unknown to the attacker before encryption.
Hence the attacker cannot construct the plaintext P

′ such that P
′ = P ⊕ IV1 ⊕ IV2. As a

result, the attacker cannot collect the correct and faulty ciphertexts pair for the same input
in the encryption process. However, in the decryption process, IV must be provided by the
user along with the ciphertext as input to the module. In this scenario, it is reasonable
to assume that the attacker has access to the decryption process, allowing them to input



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 707

a randomly chosen IV and a string, and subsequently obtain the corresponding output.
When the attacker lacks knowledge of the key, constructing a valid ciphertext is not feasible.
However, in our approach, the attacker only needs to input a 128-bit random string into
the decryption module, rather than relying on valid ciphertexts. Consequently, the output
is also a string of random bits. Based on this assumption, the attack proceeds as follows:

Step 1: Arbitrary Decryption. The attacker uses the device to decrypt a random
string S, which is 128-bit. S is known to the attacker but not deliberately constructed.
The attacker collects the output, that is denoted as Q.

Step 2: Fault Injection. The attacker injects a fault by using Rowhammer. The
fault can cause a bit flip in the opcode of AESDECLAST. Thus, the AESDECLAST
operation is altered to AESDEC, which implies that the last round of decryption becomes
the same as the previous rounds.

Step 3: Faulty Decryption. The attacker uses the faulty algorithm to decrypt the
128 bits S again, resulting in faulty output Q

′ , which can be collected by the adversary.
Step 4: Fault Analysis/Key Recovery. The attacker conducts Opcode-based Fault

Analysis with (S, Q, Q
′) to recover the key.

In AES-NI, the AESDEC instruction comprises four operations: InvShiftRows, In-
vSubBytes, InvMixColumns, and AddRoundKey. The AESDECLAST instruction,
however, consists of only three operations: InvShiftRows, InvSubBytes, and AddRound-
Key. Changing the AESDECLAST instruction to AESDEC results in the inclusion of
an additional InvMixColumns operation, denoted as A−1. The subsequent fault analysis
steps are identical to those described in Section 4.3.

Regarding the CBC mode with 192-bit and 256-bit keys and considering an unknown
IV, EOFA can be applied by injecting an additional fault into the penultimate round
of decryption, flipping AESDEC to AESDECLAST and generating a faulty output Q

′′ .
Using (Q′

, Q
′′), the search space for the penultimate round key can be deduced to 232.

The total key search space is reduced to 232 for 192-bit keys and 264 for 256-bit keys.

7 Evaluation
After identifying potentially vulnerable opcodes, we exploit Rowhammer to flip these
opcodes and recover the secret key. There are three main steps to achieve this. In the first
step of profiling memory, we profile the physical memory allocated to the attacker, aiming
to collect sufficient vulnerable pages that contain Rowhammer bit flips and their paired
aggressor pages. In the second step of faulting targeted opcodes, the attacker, co-located
with the victim on the same physical core and the same OS, tricks the OS into using a victim
page to store targeted opcode of the victim. When the attacker sends encrypting queries
to the victim, the victim generates and returns the ciphertexts. During the encryption
process, the attacker induces bit flips in the opcode, thus collecting faulty ciphertexts.
In the last step of recovering secret keys, we perform a post-fault analysis via OFA or
EOFA to recover the secret key from the victim. For each end-to-end attack, the victim
employs one of four ciphers implemented using AES-NI: AES-ECB-128, AES-ECB-192,
AES-CBC-128 (with a known IV), and AES-CBC-128 (with an unknown IV).

7.1 Setup

Our experiment is conducted on Ubuntu 22.04.6 LTS environment with the kernel version
of 5.4.0-84-generic. The CPU is Intel Core i3-10100 at 3.60GHz. The DRAM memory is
an 8 GB Apacer DDR4 DIMM with part number D12.2324WC.001. The targeted AES
implementation is based on the sample code described in the AES-NI white paper [Gue10],
which is commonly used to develop programs for AES encryption and decryption, and is
widely regarded as a standard reference.



708 Practical Opcode-based Fault Attack on AES-NI

Figure 5: The distribution of flippable-bit offsets over 4 KB-aligned pages on our DDR4
module. Bit flips from 1 to 0 (blue) and bit flips from 0 to 1 (red) accumulated over 4 KB
pages.

7.2 Profiling Memory
Residing in an attack process, we profile 6 GB of physical memory to identify sufficient
victim pages containing Rowhammer-based bit flips and their paired aggressor pages.
Achieving this requires determining whether the virtual addresses (VAs) being hammered
map to different rows within the same bank. This, in turn, necessitates partial knowledge
of the mapping between VAs and physical addresses (PAs), and the mapping between PAs
and DRAM addresses. However, the OS kernel, prevents user processes from accessing
the privileged pagemap interface, which translates VAs to PAs. Additionally, the second
mapping, managed by the memory controller, is proprietary and not publicly disclosed by
Intel.

To derive the first mapping partially, we exploit the deterministic behavior of the buddy
allocator to allocate contiguous 2 MB memory blocks. In such blocks, a VA shares the
least significant 21 bits with its corresponding PA. To obtain these 2 MB memory blocks,
we first exhaust all free memory blocks no larger than 2 MB by using the mmap system call
with the MAP_POPULATE flag. Next, we issue 2 MB memory requests via mmap, forcing the
kernel to split 4 MB memory blocks. This yields multiple 2 MB blocks where VAs and
PAs share the same lowest 21 bits.

For the second mapping, we use DRAMDig [WZCN20] to reverse engineer the machine’s
DRAM address function. The results show that the DRAM bank index is determined by
bitwise operations on physical address bits (6, 13), (14, 17), (15, 18), and (16, 19), while
the row index is determined by bits 17 to 32. Besides, there are 16 banks in total, defined
by the four pairs of address bits, and 216 rows per bank, with each row comprising 217

bytes. Consequently, it is possible to use a VA to determine its DRAM bank and whether
two VAs belong to the same row.

Last, we use TRRespass [FVH+20] to identify an effective hammering pattern for the
tested DDR4 modules. Modern DDR4 and DDR5 modules are equipped with Target Row
Refresh (TRR) as a defense against Rowhammer attacks. However, TRR is not foolproof
and has been circumvented by TRRespass using an evasive hammering pattern. The
results show that a double-sided hammer can induce reproducible bit flips.

Using the identified hammering pattern and the partial mapping knowledge described
above, we initiate our hammering attempts to profile memory within the attack process.



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 709

Each attempt involves a finite loop of hammering a pair of virtual pages (a double-sided
hammer) for 5,000,000 rounds. After each attempt, we inspect other pages for bit flips.
Through this process, we compile a set of victim pages along with their corresponding
aggressor pages.

Figure 5 shows the distribution of bit-flip page offsets across 4 KB-aligned pages. Bit
flips, either from 1 to 0 or vice versa, can occur at most page offsets. As summarized
in Table 4, all vulnerable pages with bit flips at the specific page offsets corresponding
to targeted opcodes have been identified. Specifically, for AES-ECB-128, the targeted
opcode’s page offset is 0x986, with four vulnerable pages showing bit flips at this offset. For
AES-ECB-192, two targeted opcodes with page offsets requiring opposite bit-flip directions
must be hammered: one at offset 0x986 (flipping from bit 0 to bit 1) and another at offset
0x98c (flipping from bit 1 to bit 0). We identified five vulnerable pages at offset 0x986
and three at offset 0x98c. For AES-CBC-128 with a known IV, we found five vulnerable
pages at offset 0xe2d, and for an unknown IV, eight vulnerable pages at offset 0xfd9 were
identified. We note that successfully faulting a targeted opcode requires flipping a single
vulnerable page with the corresponding page offset, as detailed below.

7.3 Faulting Targeted Opcodes
In this step, the attacker tricks the system into allocating a desired vulnerable page to
store the targeted opcode and injects Rowhammer-based faults into the page, the so-called
memory massaging [GLS+17]. As outlined in the first step, the page contains flippable bits
at the desired page offset corresponding to the targeted opcode in the targeted AES-NI
binary. We note that the target binary contains various opcodes, including those related
to AES-NI instructions. When the binary is executed, all of its opcodes are loaded into
memory, making them potentially susceptible to Rowhammer-induced faults. Additionally,
while the page-aligned virtual address (VA) of the opcode is randomized by address space
layout randomization, its page offset remains consistent.

To achieve this, we utilize a technique called Frame Feng Shui [KGGY20, FKK+22],
which exploits the predictable behaviors of the Linux buddy allocator. This technique takes
advantage of the allocator’s first-in-last-out (FILO) policy for recently unmapped physical
pages. Specifically, the Linux system employs the buddy system for page allocation
management. Physical memory is organized into zones by the buddy allocator. When
a process running on a specific CPU frees a physical page, the page is not immediately
returned to the global memory pool. Instead, it is placed into a local, fast-access structure
known as the per-CPU pageset. When the buddy allocator later needs to allocate a new
page, it first attempts to retrieve a page from the top of the per-CPU pageset, following
a stack-like access policy. This design ensures that the most recently deallocated page
from the per-cpu pageset is prioritized when fulfilling a page request.

To this end, faulting a targeted opcode consists of four steps. First, we allocate multiple
4 KB junk pages using mmap. The number of junk pages is calculated based on the number

Table 4: The fault injection rate and success rate for a single attack attempt. We overcome
the low fault injection rate by repeatedly hammering the victim page and invoking the
targeted AES-NI binary to execute until a faulty ciphertext is generated.

Cipher Targeted-Opcode
Page Offset

Number of
Vulnerable Pages

Fault Injection
Rate

Success
Rate

AES-ECB-128 0x986 4 4.8% 6.2%

AES-ECB-192 0x986
0x98c

5
3

3.6%
13.2%

3.4%
5.0%

AES-CBC-128
(Known IV) 0xe2d 5 6.3% 5.8%

AES-CBC-128
(Unknown IV) 0xfd9 8 4.5% 4.6%



710 Practical Opcode-based Fault Attack on AES-NI

Table 5: Comparisons of the AES-ECB-128 attack on our DDR4 and DDR3 modules.
DRAM Chip Targeted-Opcode

Page Offset
Number of

Vulnerable Pages
Fault Injection

Rate
Success

Rate
Apacer DDR4-2666 0x986 4 4.8% 6.2%

Samsung DDR3-1300 0x39d 5 42.0% 3.8%

of pages the targeted binary will use before allocating a page to host the target opcode. In
our four end-to-end attacks, this number ranges between 126 and 130. Next, we reserve
a vulnerable page that has a bit flip at a desired offset. To do this, we apply for a
large number of memory pages (i.e., 4 GB in our evaluation) and then search for suitable
pages that contain bit flips at the page offset corresponding to the targeted opcode in the
targeted binary. Third, we release a predictable number of junk pages via munmap, followed
by the release of the vulnerable page. These operations place the vulnerable page at the
top of the allocator’s stack. Last, we invoke the targeted binary to run its encryption
service, the buddy allocator, adhering to its FILO policy, reuses the vulnerable page to
store the targeted opcode.

In the first invocation of the victim, the process returns a correct ciphertext, ensuring
that the vulnerable page with the opcode is loaded into the page cache. After this
invocation completes, a Rowhammer-induced bit flip is performed to fault the opcode.
During the second invocation, the victim binary reuses the faulted page from the page
cache, producing a faulty ciphertext. Following this pair of invocations, we load a number
of executables [GLS+17] to evict the victim binary from the page cache, ensuring that
subsequent pairs of invocations are unaffected by the page cache.
Experimental results. For each victim algorithm, we perform 500 pairs of invocations.
Throughout these experiments, the OS remains stable and does not crash. For AES-ECB-
128, we obtained 31 pairs of correct and faulty ciphertexts. For AES-ECB-192, we collected
17 desired pairs when faulting the first opcode and 25 pairs when faulting the second
opcode. For AES-CBC-128, with a known IV, we obtained 29 ciphertext pairs, and 23
pairs when the IV was unknown. We summarize these results and computes the success
rate in Table 4. Besides, we also investigate the fault injection rate for the proposed
attacks, which represents the difficulty of inducing Rowhammer-based bit flips into the
target opcodes. We note that once our memory massaging succeeds in tricking the victim
to reuse a released vulnerable page, the attacker can repeatedly invoke and hammer the
victim until faulty ciphertexts are produced, effectively overcoming the challenge posed by
low fault injection rates. Further, as shown in Table 5, we mount the same attack on an
additional Lenovo T420 equipped with Intel Core i5-2430M CPU (Sandy Bridge), which
uses a Samsung DDR3-1300 4G DIMM (part number: M473B5273DH0-YK0) to show
its practicality. The results show that this additional platform is also vulnerable to our
proposed attack. Last, we note that a successful full key recovery requires only one pair of
correct and faulty ciphertexts.

7.4 Recovering Secret Keys

After obtaining the correct and faulty ciphertexts, we then use the method proposed in
Section 4.3 through Section 6 to recover the full secret key. For each victim cipher, only
one pair of correct and faulty ciphertexts is needed for post-fault analysis to recover the
secret key. The results are summarized in Table 6.

For AES-ECB-128, we utilized OFA to analyze the pair of ciphertexts, achieving key
recovery in 1.07 hours. For AES-ECB-192, we applied EOFA-based key recovery, with
a recovery time of 1.36 hours. Regarding AES-CBC-128, we carried out key recovery
experiments for each scenario: one with a known IV and the other with an unknown IV,
with recovery times of 1.17 and 1.03 hours, respectively.



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 711

Table 6: The time and space complexity of OFA and EOFA (Reduction in Search Space
denotes the extent to which a post-fault analysis method reduces the key search space
compared to an exhaustive search).

Cipher Fault Post-Fault
Analysis Method

Time for
Online Injection

Time for
Post-Fault Analysis

Reduction in
Search Space

AES-ECB-128 DD → DC OFA in Sec 4.3 0.14 h 1.07 h 296×

AES-ECB-192 1.DD → DC

2.DC → DD
EOFA in Sec 5 0.41 h 1.36 h 2160×

AES-CBC-128
(Known IV) DD → DC OFA in Sec 6.3 0.18 h 1.17 h 296×

AES-CBC-128
(Unknown IV) DF → DE OFA in Sec 6.4 0.14 h 1.03 h 296×

8 Discussion

Countermeasures. We discuss how to mitigate faults on AES-NI and Rowhammer
attacks. As shown in Table3, the opcodes for each instruction pair differ by only a single
bit, making AES-NI susceptible to OFA. A potential countermeasure is to re-encode these
pairs such that the difference between their opcodes is greater than one bit. Specifically, we
propose modifying the opcode mapping so that targeted instructions, such as AESENC and
AESENCLAST, are no longer adjacent in their opcode binary representations. Instead of
allowing transitions between such instructions via a single-bit flip, the re-encoding enforces
a minimum Hamming distance of two or more bits, thereby mitigating single-bit faults.
This process begins by analyzing critical instruction pairs to identify AES-NI opcodes with
a Hamming distance of 1. These opcodes are then remapped to ensure that no critical pair
has a Hamming distance of 1. For instance, if AESENC is encoded as 0x66, 0x0F, 0x38,
0xDC, AESENCLAST could be remapped to 0x66, 0x0F, 0x38, 0xD3 (with a Hamming
distance of 4), rather than the original 0xDD. Crucially, this re-encoding must remain
transparent to software, necessitating either microcode updates or CPU-level support
to translate legacy opcodes into the revised encoding scheme. However, if Intel adopts
this approach to mitigate OFA, this can render legacy software incompatible with the
updated hardware and distributing microcode updates across all affected devices requires
coordination with relevant vendors.

To defend against Rowhammer-based bit flips and its attacks, a number of solutions
have been proposed including software-only and hardware-based approaches (for more de-
tails, please refer to [ZCQ+24]). Software-only mitigations [AYQ+16, BBG+19, KOT+18,
ZCW+22] do not require hardware changes, making them compatible with existing hard-
ware. The most relevant migitation is RIP-RH [BBG+19] which modifies the underlying op-
erating system’s memory allocator to provide DRAM-aware memory isolation for local user
processes. This prevents a victim process from reusing vulnerable pages released by an at-
tacker process. Hardware-based solutions [KDK+14, SJM18, LKL+19, MJFR22, JLK+23]
aim to eliminate Rowhammer bit flips by modifying hardware, though they have yet to
be widely adopted in the industry, with a few exceptions [JED12, JED15]. Even for
those that have been adopted, they have proven to be insecure against Rowhammer. For
instance, ECC (Error Checking and Correcting) and TRR (Targeted Row Refresh) are
used by DRAM manufacturers in production, but both have been reverse-engineered and
bypassed [CRGB19, FVH+20].
Comparison with DFA. There are three primary distinctions between OFA and
Differential Fault Analysis (DFA). First, while DFA introduces faults to alter the data
state, our approach emphasizes manipulating the operations of the encryption algorithm.
Second, in DFA, the states before and after the fault are similar in essence but differ only
by a few bits. Conversely, in our method, the states undergo different functions due to
changes in operations, such as adding or omitting a function, resulting in significant state
modifications. Third, DFA often involves examining differential paths to demonstrate how



712 Practical Opcode-based Fault Attack on AES-NI

minor alterations in intermediate states affect the ciphertext. In contrast, our method
bypasses this step, directly applying XOR operations to faulty and correct ciphertexts and
solving equations to recover the key.
Extension on Galois/Counter Mode (GCM) and Counter Mode (CTR). AES-
GCM, specified in NIST SP 800-38D [Dwo07], consists of two components: authentication
and encryption/decryption, with the encryption/decryption module utilizing the AES CTR
mode. Assuming that the attacker can authenticate and access the encryption/decryption
module, the attack becomes equivalent to applying OFA to AES Counter Mode (CTR).

The CTR applies the forward cipher to a sequence of counters Tj and generates output
blocks Oj = EK(Tj). Then the output blocks are XORed with plaintext Pj to produce
ciphertext Cj . In OFA, only the first block of each encryption. Thus, we omit the subscript.
When applying OFA, the attacker inputs a random counter T and a plaintext P , obtaining
a ciphertext C. The attacker then injects a fault by Rowhammer, altering AESENCLAST
to AESENC. The faulty algorithm is then used to encrypt the plaintext P with counter T
again, resulting in the faulty ciphertext C

′ . Let EK_correct denote the correct encryption
algorithm and EK_faulty its faulty variant resulting from the injection. The distinguishing
characteristic of EK_faulty is the inclusion of an additional MixColumns operation. Let X
be the 128-bit state after ShiftRows operation in the last round. As shown in Equation (1)
the last round of AddRoundKey operation can be represented as: X ⊕ KN = C. Then
we derive:

C ⊕ C
′

=(P ⊕ EK_correct(T )) ⊕ (P ⊕ EK_faulty(T ));
=EK_correct(T ) ⊕ EK_faulty(T );
=X ⊕ KN ⊕ AX ⊕ KN ;
=X ⊕ AX.

(16)

The fault analysis methodology described in Section 4.3 can then be directly employed to
recover the secret key.

For longer keys, Enhanced Opcode-based Fault Analysis (EOFA) introduces a second
fault that converts AESENC to AESENCLAST in the penultimate round, producing
additional faulty ciphertext C

′′ . This approach reduces the key search space to 232

candidates for AES-192 and 264 for AES-256

9 Conclusion
In conclusion, this paper presents a novel fault attack, which injects single bit flip faults into
the opcodes, enabling the recovery of full AES keys. Our key observation is that the opcodes
for various AES-NI operations differ by only a single-bit, so they can be altered to another
one by introducing Rowhammer-based faults. This lays the foundation for our proposed
Opcode-based Fault Analysis (OFA) method, which adeptly utilizes a single pair of correct
and faulty ciphertexts to recover the key. Our methodological approach is underpinned by
the algebraic properties of MixColumns operation and Gaussian elimination over finite
fields. In particular, with one pair of correct and faulty ciphertexts, OFA can reduce the
key search space to 232 for a 128-bit key. To further reduce the key space for AES-192 and
AES-256, we propose the Enhanced Opcode-based Fault Analysis (EOFA), which, compared
to exhaustive search, reduces the key space by factors of 2160 and 2192, respectively. We
detail the attack methods for two modes (ECB and CBC) and extend the discussion to
two additional modes (CTR and GCM). Our research reveals that although AES-NI can
mitigate certain side-channel attacks, it is susceptible to actively induced faults caused by
fault injection attacks.

Acknowledgments
This work was supported in part by National Key R&D Program of China (2023YFB3106800).



X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 713

References
[ABC+24] Ravi Anand, Subhadeep Banik, Andrea Caforio, Tatsuya Ishikawa, Takanori

Isobe, Fukang Liu, Kazuhiko Minematsu, Mostafizar Rahman, and Kosei
Sakamoto. Gleeok: A family of low-latency PRFs and its applications to
authenticated encryption. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 545–587, 2024.

[AWK+25] Samy Amer, Yingchen Wang, Hunter Kippen, Thinh Dang, Daniel Genkin,
Andrew Kwong, Alexander Nelson, and Arkady Yerukhimovich. PQ-hammer:
End-to-end key recovery attacks on post-quantum cryptography using rowham-
mer. In IEEE Symposium on Security and Privacy, pages 48–48, 2025.

[AYQ+16] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,
Matthew Hicks, Yossi Oren, and Todd Austin. ANVIL: Software-based pro-
tection against next-generation rowhammer attacks. In Architectural Support
for Programming Languages and Operating Systems, pages 743–755, 2016.

[BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri.
Opensslntru: Faster post-quantum TLS key exchange. In USENIX Security
Symposium, pages 845–862, 2022.

[BBG+19] Carsten Bock, Ferdinand Brasser, David Gens, Christopher Liebchen, and
Ahamd-Reza Sadeghi. RIP-RH: Preventing rowhammer-based inter-process
attacks. In Asia Conference on Computer and Communications Security,
pages 561–572, 2019.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of
checking cryptographic protocols for faults. In International conference on
the theory and applications of cryptographic techniques, pages 37–51, 1997.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology, pages 513–525, 1997.

[CRGB19] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Exploit-
ing correcting codes: on the effectiveness of ECC memory against rowhammer
attacks. In IEEE Symposium on Security and Privacy, pages 55–71, 2019.

[CVM+21] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David F. Oswald,
and Flavio D. Garcia. Voltpillager: Hardware-based fault injection attacks
against intel SGX enclaves using the SVID voltage scaling interface. In
USENIX Security Symposium, pages 699–716, 2021.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, pages 644–654, 1976.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijn-
dael document version 2. AES Algorithm Submission, Septem-
ber 1999. Available at https://csrc.nist.gov/csrc/media/
projects/cryptographic-standards-and-guidelines/documents/
aes-development/rijndael-ammended.pdf.

[Dwo01] Morris Dworkin. NIST special publication 800-38a 2001 edition. NIST Special
Publication, 800(3), 2001.

[Dwo07] Morris Dworkin. Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC, 2007. NIST Special Publication
(SP) 800-38D.

https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf


714 Practical Opcode-based Fault Attack on AES-NI

[FKK+22] Michael Fahr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob Lichtinger,
Dana Dachman-Soled, Daniel Genkin, Alexander Nelson, Ray A. Perlner,
Arkady Yerukhimovich, and Daniel Apon. When frodo flips: End-to-end
key recovery on frodokem via rowhammer. In ACM SIGSAC Conference on
Computer and Communications Security, pages 979–993, 2022.

[FVH+20] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Trrespass: Ex-
ploiting the many sides of target row refresh. In IEEE Symposium on Security
and Privacy, pages 747–762, 2020.

[GLS+17] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger,
Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. Another flip in the
wall of rowhammer defenses. IEEE Symposium on Security and Privacy, pages
245–261, 2017.

[Gue10] Shay Gueron. Intel advanced encryption standard AES new instructions set.
Intel Corporation, 128, 2010.

[GZZ+25] Xue Gong, Fan Zhang, Xinjie Zhao, Jie Xiao, and Shize Guo. Key schedule
guided persistent fault attack. IEEE Transactions on Information Forensics
and Security, pages 767–780, 2025.

[HAZ+24] Junhao Huang, Alexandre Adomnicai, Jipeng Zhang, Wangchen Dai, Yao
Liu, Ray C. C. Cheung, Çetin Kaya Koç, and Donglong Chen. Revisiting
Keccak and Dilithium implementations on ARMv7-M. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 1–24, 2024.

[JED12] JEDEC. DDR4 SDRAM Specification, 2012.

[JED15] JEDEC Solid State Technology Association. Low power double data
rate 4 (LPDDR4). https://www.jedec.org/standards-documents/docs/
jesd209-4b, 2015.

[JLK+23] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder, Moritz
Lipp, and Daniel Gruss. CSI:Rowhammer – cryptographic security and
integrity against Rowhammer. In IEEE Symposium on Security and Privacy,
pages 236–252, 2023.

[JT12] Marc Joye and Michael Tunstall. Fault analysis in cryptography, volume 147.
Springer, 2012.

[JWS+24] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej Bölcskei,
and Kaveh Razavi. Zenhammer: Rowhammer attacks on AMD zen-based
platforms. In USENIX Security Symposium, pages 1615–1633, 2024.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In International Symposium on Computer Architecture, pages 361–372, 2014.

[KGGY20] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed:
Reading bits in memory without accessing them. In IEEE Symposium on
Security and Privacy, pages 695–711, 2020.

https://www.jedec.org/standards-documents/docs/jesd209-4b
https://www.jedec.org/standards-documents/docs/jesd209-4b


X. Gong, X. Zhang, Q. Wu, F. Zhang, J. Xu, Q. Shen and Z. Zhang 715

[KOT+18] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis Andriesse,
Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. ZebRAM: comprehensive
and compatible software protection against rowhammer attacks. In Operating
Systems Design and Implementation, pages 697–710, 2018.

[LKL+19] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho Ahn.
TWiCe: preventing row-hammering by exploiting time window counters. In
International Symposium on Computer Architecture, pages 385–396, 2019.

[LTH22] Xiang Li, Russell Tessier, and Daniel Holcomb. Precise fault injection to
enable DFIA for attacking AES in remote FPGAs. In Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 1–5,
2022.

[MDT+23] Koksal Mus, Yarkın Doröz, M Caner Tol, Kristi Rahman, and Berk Sunar.
Jolt: Recovering TLS signing keys via rowhammer faults. In IEEE Symposium
on Security and Privacy, pages 1719–1736. IEEE, 2023.

[MIS20] Koksal Mus, Saad Islam, and Berk Sunar. QuantumHammer: A Practical
Hybrid Attack on the LUOV Signature Scheme, page 1071–1084. 2020.

[MJFR22] Michele Marazzi, Patrick Jattke, Solt Flavien, and Kaveh Razavi. PROTRR:
Principled yet optimal in-dram target row refresh. In IEEE Symposium on
Security and Privacy, 2022.

[MKS12] Keaton Mowery, Sriram Keelveedhi, and Hovav Shacham. Are AES x86 cache
timing attacks still feasible? In Cloud computing security Workshop, pages
19–24, 2012.

[MOG+20] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. Plundervolt: Software-based fault injection attacks against
intel SGX. In IEEE Symposium on Security and Privacy, pages 1466–1482,
2020.

[RD01] Vincent Rijmen and Joan Daemen. Advanced encryption standard. Proceedings
of federal information processing standards publications, national institute of
standards and technology, 19:22, 2001.

[Res18] Eric Rescorla. The transport layer security TLS protocol version 1.3. https:
//www.rfc-editor.org/rfc/rfc8446, 2018.

[SJM18] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. Mitigating
wordline crosstalk using adaptive trees of counters. In International Symposium
on Computer Architecture, pages 612–623, 2018.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault
analysis of the advanced encryption standard using a single fault. In IFIP
international workshop on information security theory and practices, pages
224–233, 2011.

[WTM+20] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio, Thomas
Eisenbarth, and Berk Sunar. Jackhammer: Efficient rowhammer on hetero-
geneous fpga-cpu platforms. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 1–25, 2020.

[WZCN20] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal. Dramdig:
A knowledge-assisted tool to uncover dram address mapping. In Design
Automation Conference, pages 1–6, 2020.

https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446


716 Practical Opcode-based Fault Attack on AES-NI

[ZCQ+24] Zhi Zhang, Decheng Cheng, Jiahao Qi, Yueqiang Cheng, Shijie Jiang, Yiyang
Lin, Yansong Gao, Surya Nepal, Yi Zou, Jiliang Zhang, and Yang Xiang.
SoK: Rowhammer on commodity operating systems. In Asia Conference on
Computer and Communications Security, 2024.

[ZCW+22] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He, Wenhao Wang, Nepal
Surya, Yansong Gao, Kang Li, Zhe Wang, and Chenggang Wu. Softtrr: Protect
page tables against rowhammer attacks using software-only target row refresh.
In USENIX Annual Technical Conference, 2022.

[ZHC+21] Zhi Zhang, Wei He, Yueqiang Cheng, Wenhao Wang, Yansong Gao, Minghua
Wang, Kang Li, Surya Nepal, and Yang Xiang. Bitmine: An end-to-end tool
for detecting rowhammer vulnerability. IEEE Transactions on Information
Forensics and Security, pages 5167–5181, 2021.

[ZHF+23] Fan Zhang, Run Huang, Tianxiang Feng, Xue Gong, Yulong Tao, Kui Ren,
Xinjie Zhao, and Shize Guo. Efficient persistent fault analysis with small
number of chosen plaintexts. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 519–542, 2023.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
150–172, 2018.

[ZZJ+20] Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie
Zhao, Zhe Liu, Dawu Gu, and Kui Ren. Persistent fault attack in practice.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):172–195, 2020.


	Introduction
	Our Contribution
	Organization

	Background
	Notations
	AES

	Related Works
	Differential Fault Analysis
	Fault Attacks on AES-NI
	Rowhammer

	Opcode-based Fault Attack on AES-NI
	Threat Model
	Potential Fault Injection Locations
	Opcode-based Fault Analysis

	Enhanced Opcode-based Fault Analysis
	Extensions to AES-CBC Mode 
	The CBC Mode
	Key Recovery of CBC Mode
	Attack on CBC Mode with Known IV
	Attack on CBC Mode with Unknown IV

	Evaluation
	Setup
	Profiling Memory
	Faulting Targeted Opcodes
	Recovering Secret Keys

	Discussion
	Conclusion

