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Abstract—Zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARK) schemes have been a promising tech-
nique in verified computation. Zk-SNARK schemes were designed
to be mathematically secure against cryptographic attacks and
it remains unclear whether they are vulnerable to fault injection
attacks. In this work, we provide a positive answer by presenting
ZK-Hammer, which leaks secrets from zk-SNARK schemes via
Rowhammer. We incur faults in the exponentiate variables in the
Quadratic Arithmetic Program (QAP) problem. Then we analyze
the faulty proof using the bilinear pairing technique and manage
to recover the secret. We employ a Rowhammer fault evaluation
in libsnark and identify 3 CVEs.

I. INTRODUCTION

Zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARK) schemes have significantly evolved
from their conceptual origins in complexity theory and cryp-
tography [1] to their current role as fundamental components,
enabling a wide array of practical applications including
blockchain payments [2], smart contract [3], and other aca-
demic areas like machine learning [4], multiparty computa-
tion [5] and post-quantum cryptography [6]. As a mechanism
for an untrusted prover to convince a verifier of the correctness
of a computation without disclosing any other information
(zero-knowledge), zk-SNARKs have transitioned from theoret-
ical constructs to widely used practical implementations over
the past decade [7]–[9].

Existing zk-SNARK schemes have been designed to have
cryptographic guarantees such as soundness, completeness and
zero knowledge. However, those nice properties only hold
in ideal conditions, e.g., circumstances that do not consider
side-channel attacks, correct implementations of upper-level
applications, etc. There are no adequate works that recog-
nise the severity of the hardware fault attacks. A powerful
technique in this category is a fault injection attack through
Rowhammer [10].

Rowhammer can inject a software-induced fault in the
main memory of a commodity system through hardware bit
flips in DRAM [11]–[13]. Since the Rowhammer vulnera-
bility was discovered in hardware in 2014 [11], it has been
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exploited to break two categories of practical cryptographic
schemes, signature schemes and encryption schemes (a.k.a
key exchange mechanisms). For the first category, there have
been numerous successful attacks against ECDSA [14]–[17],
EdDSA [18] and post-quantum signatures such as LUOV [19]
and Dilithium [20]. For the second category, successful attacks
against RSA [21]–[23], Frodo [24] and Kyber [25], [26]
have also been reported. Those works expand the impact and
highlight the severity of Rowhammer attacks.

Despite the growing threat of Rowhammer and all the
progress made in zk-SNARK field, we observe that the
vulnerability of zk-SNARK schemes against Rowhammer-
based attacks has not been adequately evaluated. Thus, we
are interested in the following questions:

1) If a fault occurs in zk-SNARK schemes, is it meaningful to
an attacker?

2) If so, can an attacker exploit the vulnerability and deduce
some secrets?

3) Further, is the vulnerability general to other zk-SNARK
schemes and can we give some countermeasures?

Our work: In this paper, we offer affirmative responses
by presenting ZK-Hammer: a thorough fault analysis and
evaluation of Quadratic Arithmetic Program (QAP) based
zk-SNARK schemes. Due to the complexity of zk-SNARKs
(see Section II), most of the faults will simply result in a failure
in the proof generation which cannot be exploitable. A general
challenge in our attack is to find the meaningful position of the
fault which may result in the leakage of secrets. We managed
to solve this challenge by designing a Fault + Recover process.
In the faulting phase, we introduce faults to the secret we
aim to leak in the proof generation. The faulty secret will be
multiplied by its selector polynomial, subjected to a group
exponentiation and then published as part of the proof. In
the recovery phase, with the faulty proof, we do a modified
verification. Unlike the original verification algorithm, we
multiply a correction term in the pairing operation. Note
that the term is correlated to the fault and if this modified
verification passes, we can deduce the fault as bits of the
secret leakage. We have designed an algorithm to do this phase
automatically and we further emphasize our analysis applies



to all the zk-SNARK schemes in the QAP category.
In our evaluation, we have implemented range proof as an

example application of libsnark. Utilizing Rowhammer to
inject a one-bit flip, we got 160 faulty proofs. Utilizing our
proposed analysis algorithm, we can leak more than 80%
information of the secret (personal balance in the range-
proof case) and thus break the zero-knowledge property of
zk-SNARK schemes. To mitigate our attack, we provide a few
algorithmic defences specific to zk-SNARK and some general
hardware defences which we have reported to libsnark.
Contributions: The main contributions of this paper are as
follows:
• To the best of our knowledge, we introduce the first

fault injection analysis and evaluate ZK-Hammer against
zk-SNARK schemes for general circuits. ZK-Hammer iden-
tifies vulnerable parameters and contains a necessary algo-
rithm to recover the secrets.

• We employ ZK-Hammer to other QAP-based zk-SNARK
schemes (i.e., Groth and PGHR) and demonstrate our attack
applies to other schemes in the QAP category.

• We evaluate Rowhammer attacks against the GGPR
scheme using the recent popular cryptographic library, i.e.,
libsnark. When faulting the secret in our test example,
we achieve 80% leakage of information with 160 faulty
proofs.

• We have provided countermeasures to mitigate our attack.
Our countermeasures receive positive responses from de-
velopers of libsnark.

Responsible Disclosure: We have disclosed our findings
to the developers of libsnark. We have been assigned
3 CVE numbers (available at https://github.com/liang-junkai/
ZK-hammer), which track the fault-injection vulnerability in
three zk-SNARK schemes.

II. BACKGROUND

A. Rowhammer Attacks Against Cryptography

Rowhammer is a software-induced fault in DRAM that can
cause bit flips in the main memory of commodity systems [11].
Specifically, when a DRAM row is accessed frequently (or
hammered), it may lead to permanent charge leakage, resulting
in bit flips in adjacent rows. The rows that are vulnerable are
termed victim rows, whereas the frequently accessed rows are
referred to as aggressor rows. A double-sided Rowhammer is
shown in Figure 1.
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Fig. 1: Demonstration of double-sided Rowhammer

Existing Rowhammer attacks in the context of cryptog-
raphy target signature schemes [14]–[16], [18]–[21] and
key-exchange mechanisms (KEMs) [22]–[26]. For the first
category, the attacks against signature schemes use a
Fault+Recover pattern to leak the secret key. When faulting
public keys, a single faulty signature and a valid one are com-
pared to compute the secret key. This comparison process is
called differential fault analysis (DFA). When faulting secrets,
the attacker leaks one bit of secret key by one faulty signa-
ture, and a full recovery requires hundreds of unique faulty
signatures. For the second category, the attacker faults the
control flow or secret key in the decryption query and recovers
usable information from the victim’s response. We notice that
there is no fault analysis against zk-SNARK schemes and all
the analyses above are ad-hoc which cannot apply to other
cryptographic schemes. Our work utilizes the Fault+Recover
idea in the attacks against signature schemes but the derivation
is different and more complicated in zk-SNARK schemes than
in traditional signature schemes.

B. Zk-SNARK Scheme

Zk-SNARKs are cryptographic proof systems that enable
the verification of NP computations with significantly reduced
complexity compared to classical NP verification methods.
Zk-SNARKs have been instrumental in advancing the field
of cryptography by providing efficient and secure methods for
proving knowledge without revealing the underlying informa-
tion. The definition of zk-SNARK is as follows:

Definition II.1 (Zk-SNARK). A zk-SNARK scheme consists
of three algorithms: (Setup,Prove, Verify) defined as fol-
lows:

• Setup(pp) → (pk, vk) : Given public parameters pp as
input, the algorithm outputs proving and verification keys
pk and vk.

• Prove(pk, x, w,R)→ π : The prover generates the proof
π related to the key pk, instance and witness pair (x,w),
and the relation R.

• Verify(vk, x, π)→ {0, 1}. The verifier uses a verification
key vk, the public instance x, and proof π to verify if the
proof π is correct.

In addition, the definition of zk-SNARK requires 4 properties:

• Perfect completeness: Given (x,w) ∈ R, an honest
prover can convince the verifier outputting 1.

• Knowledge soundness: Given x /∈ R, a malicious prover
interacting with the verifier can only make it output 1 with
negligible probability.

• Zero knowledge: Given x ∈ R, a simulator without
w can generate a transcript of an interaction between an
honest prover and a potentially malicious verifier. This
simulated transcript is computationally indistinguishable
from a true proof which means the proof reveals no
information about w.

• Succinctness: The proof size and verification time are
sublinear in the statement to be proven.



C. QAP Technique

Our work targets QAP-based zk-SNARKs, which is one
of the most fundamental and critical categories. The scheme
GGPR [27] is the first practical zk-SNARK for general com-
putation. A main strength of GGPR is that the proof has a
constant size (9 group elements). Further, refinements have
been made to shrink the proof size from 9 to 3 [28]–[32].
The basic idea of these works is to represent the computation
the prover wants to prove as a QAP problem, a.k.a rank-1-
constraint-system (R1CS). A formal representation of QAP
(R1CS) is as follows:

Definition II.2 (QAP (R1CS)). A QAP problem Q over field
F contains three sets of m + 1 polynomials, L = {lk(x)},
R = {rk(x)}, O = {ok(x)}, for k = {0, ...,m}, and a target
polynomial q(x). Suppose F is the computation we want to
prove that has n inputs and n

′
outputs, for a total N = n +

n
′

IO elements. Then we say Q computes F if there exists
c1, ..., cN as a valid assignment of inputs and outputs, and
coefficients cN+1, ..., cm such that q(x) divides p(x), where:

p(x) = (l0(x) +

m∑
k=1

(ck · lk(x))) · (r0(x) +
m∑

k=1

(ck · rk(x)))

− (o0(x) +

m∑
k=1

(ck · ok(x)))

(1)

III. THREAT MODEL

Aligned with existing Rowhammer attacks against crypto-
graphic schemes [14], [19], [20], our threat model is described
as follows:
• An attacker can initiate an arbitrary, unprivileged user

process without root privileges, co-located with a victim
process in the same DRAM module. The victim process
executes a specific zk-SNARK scheme, which the attacker
can query for proof. Crucially, the attacker possesses knowl-
edge of the scheme’s parameters, including the secret key
bit length and the public key description.

• The operating system functions correctly, isolating the
attacker from the victim without any software vulnerabil-
ities. The kernel hosting the victim process is considered
secure, ensuring effective separation between the attacker
and victim. Crucially, the attacker and victim processes do
not need to run on the same kernel. As long as they share
DRAM modules, a remote attack can be executed.

• The shared DRAM modules are susceptible to Rowhammer
bit flips induced by the attacker. The location of a bit flip
is specific to a particular DRAM module.

IV. ZK-HAMMER: FAULT ATTACK AGAINST ZK-SNARK

In this section, we present zk-SNARK by analysing the
details of QAP-based zk-SNARK schemes and explaining how
to inject a fault and make the recovery. Based on the analysis,
ZK-Hammer uses 3 components to do a successful attack: pre-
processing, online faulting, and post-processing. Generally,

ZK-Hammer contains 4 main components (which are shown
in Figure 2):
• A guideline: providing the necessary formula derivation

about where to inject the faults and how to leak secrets
theoretically.

• Pre-processing phase: setups for Rowhammer attack. We
use a malicious, unprivileged process to collect system
memory information.

• Online faulting phase: mapping the secret to vulnerable
locations and starting the row refresh.

• Post-processing phase: deducing the secret leakage accord-
ing to the faulty proofs.
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Fig. 2: An overview of ZK-Hammer.

A. Fault Analysis of QAP-based Zk-SNARK

We first briefly describe a classical scheme in this category
named GGPR [27], based on which we show how to leak
secrets when we incur faults on the parameters.
Gen(F, 1λ): Let F be a function with N input and output
values from field F. Use QAP instance Q = {q(x), L,R,O}
of size m. Let Imid = N + 1, ...,m denote the non-IO values.
Let e be a bilinear map i.e., e : G × G → GT and g be a
generator of G. Choose random values s, α, βl, βr, βo, γ ← F.
Compute public key PKF for prover:

PKF = {{glk(s)}k∈Imid
, {grk(s)}k∈[m], {gok(s)}k∈[m],

{gαlk(s)}k∈Imid
, {gαrk(s)}k∈[m], {gαok(s)}k∈[m]

{gβllk(s)}k∈Imid
, {gβrrk(s)}k∈[m], {gβook(s)}k∈[m]

{gs
i

}i∈[m], {gαs
i

i }i∈[m]}
(2)

Compute public key V KF for verifier:

V KF = {g, gα, gγ , gβlγ , gβrγ , gβoγ , gq(s), {glk(s)}k∈[N ]}
(3)

Here we do not inject faults to PKF or V KF , as they are
not related to the witness. If we inject faults to the secret
parameter s, from the attacker’s view, the polynomials are
evaluated at another point, which is also valid and we cannot
deduce any information. Instead, we choose to inject faults in
the next Prove procedure.
Prove(PKF , u): On input u, the prover first construct the
QAP instance Q for y ← F (u). As a result, the prover knows
every value of {ci}i∈[m] as a solution for the QAP instance



Q. Then she solves h(x) = (L(x)R(x) − O(x))/q(x), and
computes the proof π as:

{gLmid(s), gR(s), gO(s), gh(s),

gαLmid(s), gαR(s), gαO(s), gαh(s),

gβlL(s)+βrR(s)+βoO(s)}
(4)

where Lmid(x) =
∑

k∈Imid
cklk(x), L(x) =

∑
k∈[m] cklk(x),

R(x) =
∑

k∈[m] ckrk(x) and O(x) =
∑

k∈[m] ckok(x)
Here {ci}i∈[m] are the witnesses that the prover wants to

keep secret. The guarantee of the zero-knowledge property is
about the witnesses such that the prover convinces the verifier
she knows {ci}i∈[m] which satisfies the QAP problem without
revealing those witnesses. When we inject fault on a term in
the witness (e.g., ci) when computing Lmid(s), a part of the
proof becomes (denote the faulty term as c

′

i and the fault as
∆ci):

gL
′
mid(s) = g

∑
k∈Imid,k ̸=i cklk(x)+c

′
ili(x)

= g
∑

k∈Imid,k ̸=i cklk(x)+cili(x)−∆cili(x)

= gLmid(s)−∆cili(x)

(5)

The derivation for gαL
′
mid(s) is similar, we present as below:

gαL
′
mid(s) = gαLmid(s)−α∆cili(x) (6)

The faulty part of the proof can be considered a valid
one plus a correction term related to the fault. For gL

′
mid(s),

the correction term is the fault ∆ci multiplies a selector
polynomial li(x). The selector polynomials are determined by
the public function F and thus are public to the attacker. For
gαL

′
mid(s), α is secret but gα is public and the attacker can

do linear combinations by group operations. Below we use
bilinear pairings in Verify procedure to eliminate the correction
term in the equation and deduce the fault ∆ci. Because the
bit flip is either from 0 to 1 or 1 to 0, the fault ∆ci denotes
the leakage of the witness ci.
Verify(V KF , u, π): First the verifier uses pairing function e to
check α and β terms are correct to ensure the consistency of
the variables and selector polynomials (e.g., e(gLmid(s), gα) =
e(gαLmid(s), g)). This requires 8 pairings and 3 for the β terms.
Then the verifier computes her terms for inputs as gLio(s) =∏

k∈[N ](g
lk(s))ck and do the final check for QAP divisibility

requirement:

e(gh(s), gq(s)) = e(gLmid(s) · gLio(s), gR(s))/e(gO(s), g) (7)

When a fault (as shown in Equation 5, 6) occurs, the
check shown in Equation 7 will fail because of the correction
computed above. As the length of ci is measurable, we
can enumerate all the possible ∆ci and compute a related
correction term to pass the following equation:

e(gL
′
mid(s) · gLio(s), gR(s))/e(gO(s), g)

= e(gLmid(s)−∆cili(x) · gLio(s), gR(s))/e(gO(s), g)

= e(g−∆cili(s), gR(s)) · e(gLmid(s) · gLio(s), gR(s))/e(gO(s), g)

= e(gh(s), gq(s)) · e(g−∆cili(s), gR(s))
(8)
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Fig. 3: An example of faulting QAP-based zk-SNARKs. The
orange parts illustrate the faulting parameters and values.

when Equation 8 passes, we find the correct fault injected
to the witness ci and we can deduce the original bit value on
the same position.
Generality: We apply the fault analysis to other QAP-based
zk-SNARKs, such as PGHR [33] and Groth [29] to shown
the generality of our attack. As long as the proof is generated
by assigning variables to the QAP selector polynomials, our
attack applies.

For the PGHR scheme, the only difference is that it uses
3 different group generators gL, gR, gO for L(x), R(x), O(x)
respectively. The divisibility check is thus different but we can
still extract the faulty term following a similar technique. The
derivation is shown as follows:

e(g
L

′
mid(s)

L · gLio(s)
L , g

R(s)
R )/e(g

O(s)
O , g)

= e(g
−∆cili(x)
L , g

R(s)
R ) · e(gLmid(s)

L · gLio(s)
L , g

R(s)
R )/e(g

O(s)
O , g)

= e(gh(s), gq(s)) · e(g−∆cili(x)
L , g

R(s)
R )

(9)
The Groth scheme uses more random values to ensure the

zero-knowledge property in only one pairing, e.g., a part of the
proof is L = g

α+Lmid(s)+rδ
L , R = g

β+R(s)+sδ
R , when a fault

occurs on ci, we can also extract the fault using a pairing
operation:

e(L
′
, R) = e(L,R) · e(g∆cili(s), R) (10)

Figure 3 shows an example of our fault on a simple com-
putation with QAP representation. The computation shown in
circuit form is first transformed to 2 constraints represented by
multiplications. Then the prover constructs the corresponding
selector polynomial matrix and multiplies it with the wit-
nesses. Our fault takes place here right before the polynomial
Lmid is computed. In our example, we fault the second bit of
c1 from 1 to 0, decreasing the absolute value by 16. The value
L

′

mid(s) used in the proof can be considered as a valid value
Lmid(s) subtracts a correction term related to the fault. If we
find the value of the term, we know the position and direction
of the fault and can deduce the original bit of c1.

B. Offline Preparing Phase

To induce Rowhammer faults in ci, we identify flippable
locations in memory and gather addresses in adjacent ham-
mering rows through memory profiling, which occurs before
initializing the victim. We organize virtual pages in consec-
utive rows of the same DRAM bank and decode the DRAM
addressing mechanism in two steps. First, do the virtual-to-
physical address translation. This can be done through the



leverage of the consistent behaviour of the buddy allocator to
encourage the kernel to allocate physically contiguous memory
[34]. Second, do the physical-to-DRAM address mapping.
This can be done through the leverage of a DRAM row
buffer timing side channel [35]. The principle is that when
two physical addresses (e.g., A and B) are located in the same
bank, the time we alternatively access them is longer than the
situation where they are in different banks due to row conflicts.

C. Online Faulting Phase

While Rowhammer-based faults can be injected into arbi-
trary parameters in the zk-SNARK scheme (e.g., the witness
ci, the evaluation of the selector polynomial li(s)), two re-
quirements must be met for a successful Rowhammer fault
attack. First, the fault must be traceable, meaning it can be
identified by an exhaustive number of possible fault patterns.
We conduct a cryptographic analysis and conclude that a
single-bit fault of ci is theoretically traceable. Second, the
traceable parameter must be located in flippable memory. We
employ the memory waylaying technique [36] to continuously
evict pages within the page cache, ultimately positioning the
targeted parameter at a flippable physical address.
Rowhammer Exploitation: Once the vulnerable bit is prop-
agated to the flippable bits in DRAM, we begin by initializing
two aggressor rows to hammer the victim row located in the
middle. We employ a random pattern to initialize the aggressor
rows. Specifically, we use random data to fill the adjacent
aggressor rows, and then perform Flush+Reload on these
rows repeatedly. This methodology allows us to trigger bit flips
without relying on the knowledge of the victim row.

D. Post-processing Phase

In this phase, we recover the flipped witness bits by the
faulty proofs. The error in the faulty proof is some multiples
of ∆ci. Therefore, if we correct the faulty proof and make it
satisfy Equation 8, we are able to find the position of the bit-
flip. The main idea of this procedure is to correct the faulty
proof by checking it using the proof verification algorithm.
We explain it specifically in our bit tracing algorithm.

In Algorithm 1, we give public parameters in the scheme
and the proof as inputs. The output is the position and value of
the secret bit in the witness. After parsing the proof, we start
enumerating the witness from c0 to cm−1 and enumerating
the position using bit index. In lines 7-11, we compute ∆
as a correction term the same way defined in Equation 8 and
multiply it with the faulty part in the original proof. If the
verification passes, the algorithm returns the desired output.
Note that if the fault direction is from 0 to 1, we need to do
a division and then do the verification as in lines 15-17.

V. EVALUATION

A. Experimental setup

We perform the experiments using a machine with an Intel
Core i3-10100 CPU (IceLake) and two Apacer DDR4-2666
8G DIMMs. The machine runs default Ubuntu 22.04 with

Algorithm 1: The bit tracing algorithm

1 Input: Prover key PKF ; Verifier key V KF and input
u for the verifier; Faulty proof π

′
; Max number of

witness m
2 Output: (witness index, bit index, value) -

Recovered secret bit
3 Parse the faulty proof as Equation 4 (Use π

′
[L] to

denote the first term gLmid(s) in π
′
)

4 for witness index from 0 to m− 1 do
5 label witness index as i
6 for bit index from 1 to len(ci) do
7 label bit index as j
8 multiplier ← 2j−1

9 Get gR(s) from π, gli(s) from PKF

10 Compute ∆ = e(gli(s)·multiplier, gR(s))

11 π
′
[L] = π

′
[L] ·∆

12 if V erify(V KF , u, π) = true then
13 return (witness index, bit index, 1)
14 else
15 π

′
[L] = π

′
[L]/∆

16 if V erify(V KF , u, π) = true then
17 return (witness index, bit index, 0)
18 end
19 end
20 end
21 end

Linux kernel 6.1.66. The zk-SNARK codes belong to the latest
version of libsnark.
Victim implementation: We use the code of zk-SNARK
scheme in libsnark and our example is the range proof, a
popular application in blockchain. It proves that a value x is
in a certain range [0, 232). In the blockchain scenario the value
x may be the user’s balance in the wallet. In the confidential
setting, the value x must be kept secret to protect the user’s
privacy. Our attack goal is to leak x by ZK-Hammer.

B. Evaluation of Offline Preparing

To find nearby rows in the DRAM bank, we first obtain 2
MB of contiguous memory blocks by leveraging the determin-
istic behaviour of the buddy allocator. Using the contiguous
memory chunk, we find the pages that are mapped into the
same DRAM bank using a row buffer timing side channel. We
repeatedly access different pages in the blocks and document
access count and access time shown in Figure 4. The pages that
are physically located on the same DRAM bank take longer
to access due to row conflict.

Next, we use the double-sided Rowhammer technique for
memory profiling, where each victim row is surrounded by
an aggressor row from the top and bottom. Each hammering
attempt consists of a finite loop targeting 4 pairs of virtual
pages, with each pair being hammered for 250,000 rounds.
After each hammering attempt, we scan the remaining unham-
mered memory for bit flips. This process allows us to collect
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Fig. 4: Histogram of access times to the pages in the buffer.

a set of victim pages along with their corresponding aggressor
pages. The page offset of a single-bit flip may vary among the
collected victim pages. Figure 5 illustrates the distribution of
bit-flip offsets across 4 KB-aligned pages.

(a) (b)

Fig. 5: Results of memory profiling. Bit flips from 1 to 0 (blue)
and bit flips from 0 to 1 (red) accumulated over 4 KB pages.

C. Evaluation of Online Faulting

In the range-proof example, the secret value x is sepa-
rated as a sequence of bits x0, ..., x31 because a proof of
x =

∑31
i=0 xi · 2i and xi = 1 or 0 yields the range of

x. In this case, the vulnerable parameters {ci}i∈[0,31] in the
QAP instance are binary and we only need to fault one bit
for each parameter. In the library, the prover first generates
the QAP instance (a.k.a constraint system) and assigns val-
ues to all the ci. The prover then calls a built-in function
r1cs_gg_ppzksnark_generator to generate a key pair,
prover key pk and verifier key vk. With pk, the prover can
generate a proof. The time for our fault injection is between the
value assignment of ci and the finish of the proof. We measure
the available faulting time which is 4245k CPU cycles. The
time is not enough for a high-probability bit flip, and we
compromise on the time to get 160 simulated faulty proofs.
We argue that this will not decrease the severity of our attack
as a small number of bits will significantly leak the privacy of
users and break the zero-knowledge property of zk-SNARK.

D. Evaluation of Post-processing

We totally get 160 unique faulty proofs for 40 randomly
chosen x in the domain. On average there are 4 faulty proofs
for each x. Different from the fault attack of signature secret
key [14] where only full key recovery is meaningful, we show
that the 1 to 4-bit leakage of x reveals much information. In
Figure 6, we compute the average of the percentage of the
shrunk range with the 40 x’s for each bit leak. We find that
a 3 or 4-bit leak can shrink the guessing range of x by more

than 70% for the attacker. A single-bit leak can also reveal
nearly 20% information.

Fig. 6: Histogram of the attacking results. The ylabel repre-
sents the shrunk range percentage when an attacker guesses
the value x after faulting.

VI. COUNTERMEASURES

In this section, we first discuss specific solutions to mitigate
fault-injection attacks against zk-SNARK schemes. We then
talk about general strategies to counteract Rowhammer.

A. Algorithmic Defenses

Verifying after proving: When a fault occurs in ci, a faulty
proof is generated. Given that the verifying algorithm can
detect the fault by rejecting the faulty proof, the cryptographic
library developer can append the verification step immediately
after proving. However, this may incur significant overhead.
In our example, this includes nine full pairing computations,
slowing down the process by a factor of ten.
Redundancy check: The redundancy check includes both
temporal and spatial checks [20]. The temporal redundancy
check re-executes proofs and compares them. The spatial
redundancy check involves storing multiple copies of secret
parameters in random DRAM locations and comparing them
after proving. Different results indicate a potential Rowham-
mer fault. These methods are generally more efficient but can
be compromised.

B. General defenses
There are two categories of general countermeasures:

software-only defenses [37], [38], which are compatible with
existing commodity systems, and hardware-based defenses
[39], which require hardware modifications. However, most
of these defences have not been adopted by the industry and
are not applicable to commodity systems and hardware.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the first novel fault attack against
zk-SNARKs, coined as ZK-Hammer, that finds exploitable and
traceable fault to a general category of zk-SNARK schemes
and perform a post-Rowhammer analysis for secret recovery.
To validate the vulnerability, we perform Rowhammer eval-
uations against the zk-SNARK codes in libsnark. Future
work involves fault analysis of other categories of zk-SNARKs
and more effective algorithmic countermeasures.
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